• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Compact Light Source based on the movement of atoms

Bioengineer by Bioengineer
May 2, 2022
in Chemistry
Reading Time: 3 mins read
0
Figure 1 | Photon Emission of the Atomic Photon Source.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Compact, CMOS compatible on-chip photon sources have attracted much attention to the scientific community and the semiconductor industry. As the transistor’s feature size is continuously scaling down, also the integration density and switching speed in integrated electronic circuits increases exponentially. This leads to an increasingly large power dissipation from electrical connections between circuit elements. Optical (photonic) interconnects and their core element — the on-chip photon source, represent a promising alternative to circumvent this limitation. However, the most promising state-of-the-art on-chip photon sources typically feature a micrometer-scale size — 1000 times larger than transistors and prevent large-scale integration. Memristors, with active areas in the nanometer or even atomic scale, could be advantageously merged with optical functions to circumvent this limitation while providing versatile functionalities.

Figure 1 | Photon Emission of the Atomic Photon Source.

Credit: by Bojun Cheng, Till-Maurice Zellweger, Konstantin Malchow, Xinzhi Zhang, Mila Lewerenz, Elias Passerini, Jan Aeschlimann, Ueli Koch, Mathieu Luisier, Alexandros Emboras, Alexandre Bouhelier and Juerg Leuthold

Compact, CMOS compatible on-chip photon sources have attracted much attention to the scientific community and the semiconductor industry. As the transistor’s feature size is continuously scaling down, also the integration density and switching speed in integrated electronic circuits increases exponentially. This leads to an increasingly large power dissipation from electrical connections between circuit elements. Optical (photonic) interconnects and their core element — the on-chip photon source, represent a promising alternative to circumvent this limitation. However, the most promising state-of-the-art on-chip photon sources typically feature a micrometer-scale size — 1000 times larger than transistors and prevent large-scale integration. Memristors, with active areas in the nanometer or even atomic scale, could be advantageously merged with optical functions to circumvent this limitation while providing versatile functionalities.

In a recent paper published in Light Science & Application, researchers from ETH Zurich and the University of Burgundy demonstrate an atomic scale memristors capable of emitting photons during resistive switching. This “Atomic Photon Source”, as it is referred to in the paper, consists of a planar Ag/amorphous SiOx/Pt junction with specially engineered electrodes forming optical antennas to enhance the emission efficiency greatly. An illustration of the device structure is depicted in Figure 1a. As shown in Figure 1b, the light emission from the “Atomic Photon Source” can be detected by a CCD camera. As illustrated in Figure 1c, light is emitted during the forming of an electrical connection between the two electrodes, which is comprised of silver atoms that gather up to form a metallic filament.

The researchers further give an explanation on the origin of the light emission in the “Atomic Photon Source”. With a range of experiments, they demonstrate that the light emission stems from an atomic rearrangement of the amorphous SiOx caused by the resistive switching. The atomic composition is locally altered, forming luminescent sites. These sites are then electrically excited and emit photons by a radiative relaxation process.

Due to its compact footprint and CMOS compatible fabrication, this “Atomic Photon Source” could potentially trigger a new conceptual paradigm for devices operating at the atomic level with electrical and optical functionalities embedded on the same nanoscale component. As such, it solves the size mismatch between the current micrometer-sized state art on-chip photon sources and nanometer-sized electrical devices.

Memristors are an emerging category of devices operating in the nanometer scale regime, relying on a different set of atomic scale effects that allow tuning the resistance value of the devices to a desired value. In the case of electro-chemical metallization memories (ECM), the type of memristors investigated by the researchers, the devices consist of simple and CMOS-friendly asymmetric metal-insulator-metal stack. Upon applying a voltage, an active metal atom is oxidized to ions, wanders along the electrical field through the insulator to the passive electrode, and eventually forms a nanometer-sized conductive metallic filament. This process can be reversed and repeated, and data could be stored as the resistance between the electrodes (resistance state). Besides high-density memories, memristors currently receive much attention to their applications where they excel compared to CMOS technology such as neuromorphic and in-memory computing. Interestingly, memristors can also be advantageously merged with optical functions: memristively controlled optical switches and photodetectors have been introduced. Yet, so far, the photonic operation of a memristor relies on external or co-integrated photon sources.



Journal

Light Science & Applications

DOI

10.1038/s41377-022-00766-z

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025
Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1281 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    190 shares
    Share 76 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New FISH-Clinical Tool Predicts Bladder Cancer Survival

Transcranial Magnetic Stimulation Safe, Effective in Youth Depression

Unlocking Lactate’s Role in AML Prognosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.