• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Common soil fungus could be ally in organic corn growers’ fight against pests

Bioengineer by Bioengineer
April 23, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Nick Sloff

A common soil fungus might be enlisted as a powerful partner by corn producers to suppress pests and promote plant growth, according to Penn State researchers, who suggest promoting the fungus could be an especially valuable strategy for organic growers who struggle with insect control.

These conclusions were reached after a study of fungus-insect-plant interactions in greenhouse- and lab-based settings. Researchers inoculated seeds of corn with spores of Metarhizium robertsii fungus and subsequently evaluated corn plants for fungal colonization of leaves and roots. They also measured plant height, chlorophyll content, above-ground biomass and relative growth rate of black cutworm.

“We saw that colonization of corn plants by the fungus M. robertsii promoted plant growth and boosted the expression of selected genes involved in plant defense in corn,” said lead researcher Mary Barbercheck, professor of entomology. “The heightened defense response suppressed the growth rate of black cutworm larvae.”

Barbercheck noted that her research group in the College of Agricultural Sciences long has been aware of this fungus and has been “just casually following it” since starting organic production studies in 2003. She knew the fungus was deadly to insects such as caterpillars on the ground but became more interested when other researchers showed it was taken up by plant roots.

“I wondered if there is a lot of this fungus out there, how it is surviving in the field and what it is doing, so I expanded my work to focus more on it,” she said. “I happen to work in organic systems, and so that’s where we’ve been studying it. But that doesn’t mean that it is not beneficial in conventional crop systems, too.”

Researchers recovered the fungus from 91% of corn plants grown from inoculated seeds, and they detected the fungus more frequently in roots compared with leaves. Colonized plants were greater in plant height and above-ground biomass compared to control plants. In feeding bioassays, the relative growth rate of black cutworm was lower on leaves from fungus-colonized plants than control plants.

These findings, recently published in Biological Control, are important, Barbercheck explained, because they show corn growers — especially organic corn growers — that they can benefit from managing their fields to promote the fungus.

“Because this fungus appears to promote plant growth, to help control pests, and to alter the plant defense response to suppress at least some pest growth, we need to adjust our management practices to support it,” she said. “Next, we have to learn how much of the fungus is in plants and what the natural infection level is. And if we make a seed treatment out of it, how effective would it be?”

There is a shortage of organically produced feed grains in the United States, Barbercheck noted. She said that could stem from many producers fearing that transitioning fields to organic is a risky proposition because they don’t know how to manage insects without insecticides and how to manage weeds without herbicides. Assistance from the Metarhizium robertsii fungus might help reassure them.

“We need to see what natural processes we can manage to make that transition less risky to help make organic farming more widespread,” she said. “On a commercial level, there are opportunities for growers to take advantage of organic markets because there is a big demand that we currently are not meeting with domestic supplies.”

###

Also involved in the study were Imtiaz Ahmad, a postdoctoral scholar in the Department of Entomology, who is affiliated with the Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan; María del Mar Jiménez-Gascob, associate professor of plant pathology; and Dawn Luthe, professor emeritus of plant stress biology, all at Penn State; and Samina Shakeeld, of Quaid-i-Azam University.

The U.S. Department of Agriculture’s National Institute of Food and Agriculture funded this research.

Media Contact
A’ndrea Elyse Messer
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.biocontrol.2019.104167

Tags: Agricultural Production/EconomicsAgricultureFertilizers/Pest ManagementMycologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Blood-Brain Barrier Regulators: Age and Sex Differences

Blood-Brain Barrier Regulators: Age and Sex Differences

October 13, 2025
Activating Sperm Motility: A Breakthrough Offering New Hope for Male Infertility

Activating Sperm Motility: A Breakthrough Offering New Hope for Male Infertility

October 13, 2025

miR-542 Overexpression Halts Cervical Cancer Growth

October 13, 2025

Global Gender Disparities in Alopecia Areata Risk

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1234 shares
    Share 493 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Patient-Centered Care in Primary Care Settings

Link Between Early Screen Time and Child Behavior

Stopping smoking later in life associated with reduced cognitive decline, study finds

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.