• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Commemorating 30 years of optical vortices: A comprehensive review

Bioengineer by Bioengineer
November 4, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Yijie Shen, Xuejiao Wang, Zhenwei Xie,Changjun Min , , Qiang Liu, Mali Gong, Xiaocong Yuan


Vortices are common phenomena that widely exist in nature, from quantum vortices in liquid nitrogen to ocean circulation and typhoon vortices and even to spiral galaxies in the Milky Way. Vortices also exist in optics, the concept of which was first proposed by theoretical physicist Pierre Coullet and colleagues [Opt. Commun. 73, 403 (1989)] thirty years ago. Hitherto, owing to their amazing structures, optical vortices (OVs) have engendered tremendous advanced applications such as optical tweezers, quantum entanglement, nonlinear optics, throughout every branch of modern optics.

They divided the 30-year development of OVs into three stages: the first 10 years is the fundamental theories stage that new physical concepts and novel physical phenomena were put forward during this stage, such as topological charge, phase singularity, vortex lattice, orbital angular momentum (OAM), and vortex beams with the spiral wave front, which laid solid theoretical foundations for the subsequent scientific applications; the second 10 years is the application development stage that due to the characteristics of singular phase of OV and high dimension of OAM, optical vortices bring a unique kind of light sources with superior performance for the applications of quantum technology, optical tweezers and particle manipulation, super-resolution imaging, biomedical and chemical detection, high-capacity optical communication etc.; The recent 10 years is the technology breakthrough stage that metasurface has brought OV into nanoscale, OAM-multiplexing has extended the capacity of optical communication to terabit- even petabit-level, and improved tunability of OV has realized novel nonlinear and quantum phenomena, pushing OV as one of the hottest scientific topics.

In this review paper, they also explained how the concept of optical vortices emerged from observed similarities between the behavior of fluid vortices and some forms of laser light. The light waves of optical vortices are twisted around their direction of travel, with a point of zero intensity at their center. The authors surveyed the steady refinement of techniques used to create optical vortices, and explore their applications. They emphasized that the tunability of OVs includes not only the spectral and temporal tunability but also the OAM-, chirality-, topological-charge-, and singularity-distribution tunability. Prominent applications include sophisticated optical computing processes, novel microscopy and imaging techniques, the creation of ‘optical tweezers’ to trap particles of matter, and optical machining using light to pattern structures on the nanoscale.

###

Media Contact
Xing Fu
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-019-0194-2

Tags: Chemistry/Physics/Materials SciencesOptics
Share15Tweet9Share3ShareShareShare2

Related Posts

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025
Wirth Named Fellow of the American Physical Society

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025

Energy Savings at Home Are Driven by Attitudes, Not Income

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1220 shares
    Share 487 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Starting Heart Disease Prevention in Childhood

Linking Demographics, Clinical Factors, and Discrimination in Autism

Revolutionizing Drug Design with Graph-Transformer GANs

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.