• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Combined river flows could send up to 3 billion microplastics a day into the Bay of Bengal

Bioengineer by Bioengineer
January 22, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by Sara Hylton, National Geographic. Taken on assignment for National Geographic’s

The Ganges River – with the combined flows of the Brahmaputra and Meghna rivers – could be responsible for up to 3 billion microplastic particles entering the Bay of Bengal every day, according to new research.

The study represents the first investigation of microplastic abundance, characteristics and seasonal variation along the river and was conducted using samples collected by an international team of scientists as part of the National Geographic Society’s Sea to Source: Ganges expedition.

Over two expeditions in 2019, 120 samples (60 each in pre- and post-monsoon conditions) were gathered at 10 sites by pumping river water through a mesh filter to capture any particles.

The samples were then analysed in laboratories at the University of Plymouth with microplastics found in 43 (71.6%) of the samples taken pre-monsoon, and 37 (61.6%) post-monsoon.

More than 90% of the microplastics found were fibres and, among them, rayon (54%) and acrylic (24%) – both of which are commonly used in clothing – were the most abundant.

Combining predicted microplastic concentration at the mouth of the river (Bhola, Bangladesh) with the discharge of the river, scientists estimate that between 1 billion and 3 billion microplastics might be being released from the Ganges Brahmaputra Meghna River Basin every day.

The research, published in Environmental Pollution, was led by researchers from the University of Plymouth’s International Marine Litter Research Unit, working with colleagues from the Wildlife Institute of India, University of Dhaka, WildTeam, University of Exeter, National Geographic Society and the Zoological Society of London.

Research Fellow and National Geographic Explorer Dr Imogen Napper, the study’s lead author, was among the participants in the Sea to Source: Ganges expedition. She said: “Globally, it has been estimated that 60 billion pieces of plastic are discharged into the ocean from rivers worldwide each day. However, what has been lacking until now has been a detailed analysis of how microplastic concentrations vary along a river’s course. By working with local communities and partners, this expedition always aimed to help us stem the flow of plastic entering the Gangetic basin. These results provide the first step in understanding how it, as well as other major rivers, may contribute to oceanic microplastic.”

The Ganges River rises in the Himalayas and runs through India and Bangladesh, where it joins the Brahmaputra and Meghna rivers shortly before reaching the Indian Ocean.

The combined flows of the three rivers are the largest in South Asia and form the most populous basin in the world, with over 655 million inhabitants relying on the water it provides.

The samples were collected during pre-monsoon (May to June 2019) and post-monsoon (October to December 2019), at sites ranging from Harsil closest to the source of the Ganges to Bhola in southern Bangladesh where it meets the Bay of Bengal.

The sample sites were selected to ensure a mixture of rural, urban, agricultural, tourism and religious locations, with the highest concentrations found closer to the river’s mouth at Bhola, in Bangladesh.

Pre-monsoon samples collected there had four times as many particles as those taken at Harsil, while post-monsoon samples had double the amount.

Professor Richard Thompson OBE, Head of the International Marine Litter Research Unit at the University and one of the study’s co-authors, said: “We know that rivers are a substantial source of microplastics in the ocean. But the information like this can help identify the key sources and pathways of microplastic and hence inform management interventions. With this type of evidence, we can progress toward using plastics more responsibly so as to get the many benefits they can bring without unnecessary contamination of the environment.”

This study is the latest by the University in the field, with it being awarded a Queen’s Anniversary Prize for Higher and Further Education in 2020 for its ground-breaking research and policy impact on microplastics pollution in the oceans.

It is currently among the partners in Preventing Plastic Pollution (PPP), a €14 million project which aims to prevent plastic pollution from rivers entering the English Channel, and LimnoPlast, a €4.1 million project examining the distribution of microplastics in European rivers and lakes.

###

Media Contact
Alan Williams
[email protected]

Original Source

https://www.plymouth.ac.uk/news/ganges-river-basin-could-send-up-to-3-billion-microplastics-a-day-into-the-bay-of-bengal

Related Journal Article

http://dx.doi.org/10.1016/j.envpol.2020.116348

Tags: BiologyDeveloping CountriesEcology/EnvironmentMarine/Freshwater BiologyPollution/RemediationPolymer ChemistryToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring the Future: A Deep Dive into Satellite-Terrestrial Integrated Networks and Their Technological Advancements

October 24, 2025

Bone Metastases Impact Prognosis in Advanced MTC

October 24, 2025

Insilico Medicine CEO Alex Zhavoronkov to Discuss Longevity and AI in Healthcare at Fortune Global Forum in Riyadh

October 24, 2025

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1279 shares
    Share 511 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    186 shares
    Share 74 Tweet 47
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring the Future: A Deep Dive into Satellite-Terrestrial Integrated Networks and Their Technological Advancements

Bone Metastases Impact Prognosis in Advanced MTC

Insilico Medicine CEO Alex Zhavoronkov to Discuss Longevity and AI in Healthcare at Fortune Global Forum in Riyadh

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.