• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cold plasma can kill 99.9% of airborne viruses, U-M study shows

Bioengineer by Bioengineer
April 8, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ANN ARBOR–Dangerous airborne viruses are rendered harmless on-the-fly when exposed to energetic, charged fragments of air molecules, University of Michigan researchers have shown.

They hope to one day harness this capability to replace a century-old device: the surgical mask.

The U-M engineers have measured the virus-killing speed and effectiveness of nonthermal plasmas–the ionized, or charged, particles that form around electrical discharges such as sparks. A nonthermal plasma reactor was able to inactivate or remove from the airstream 99.9% of a test virus, with the vast majority due to inactivation.

Achieving these results in a fraction of a second within a stream of air holds promise for many applications where sterile air supplies are needed.

“The most difficult disease transmission route to guard against is airborne because we have relatively little to protect us when we breathe,” said Herek Clack, U-M research associate professor of civil and environmental engineering.

To gauge nonthermal plasmas’ effectiveness, researchers pumped a model virus–harmless to humans–into flowing air as it entered a reactor. Inside the reactor, borosilicate glass beads are packed into a cylindrical shape, or bed. The viruses in the air flow through the spaces between the beads, and that’s where they are inactivated.

“In those void spaces, you’re initiating sparks,” Clack said. “By passing through the packed bed, pathogens in the air stream are oxidized by unstable atoms called radicals. What’s left is a virus that has diminished ability to infect cells.”

The experiment and its results are published in the Journal of Physics D: Applied Physics.

Notably, during these tests researchers also tracked the amount of viral genome that was present in the air. In this way, Clack and his team were able to determine that more than 99% of the air sterilizing effect was due to inactivating the virus that was present, with the remainder of the effect due to filtering the virus from the air stream.

“The results tell us that nonthermal plasma treatment is very effective at inactivating airborne viruses,” said Krista Wigginton, assistant professor of civil and environmental engineering. “There are limited technologies for air disinfection, so this is an important finding.”

This parallel approach–combining filtration and inactivation of airborne pathogens–could provide a more efficient way of providing sterile air than technologies used today, such as filtration and ultraviolet light. Traditional masks operate using only filtration for protection.

Ultraviolet irradiation can’t sterilize as quickly, as throughly or as compactly has nonthermal plasma.

Clack and his research team have begun testing their reactor on ventilation air streams at a livestock farm near Ann Arbor. Animal agriculture and its vulnerability to contagious livestock diseases such as avian influenza has a demonstrated near-term need for such technologies.

###

Read the paper: Inactivation of airborne viruses using a packed bed non-thermal plasma reactor

The Clack Lab

Image Link: http://myumi.ch/6k1Rk

Video link: http://myumi.ch/JY5kZ

Paper link: https://iopscience.iop.org/article/10.1088/1361-6463/ab1466/pdf

Media Contact
Nicole Moore

[email protected]

Tags: AgricultureEnvironmental HealthInfectious/Emerging DiseasesPublic HealthTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Blocking HIF-1 Shields Retinal Cells from Hypoxia

August 14, 2025
Scientists Harness Smartwatches to Gain Deeper Insights into Human Activity

Scientists Harness Smartwatches to Gain Deeper Insights into Human Activity

August 14, 2025

Decade-Long Sediment Flow After Earthquake

August 14, 2025

Serine Metabolism Shapes Natural Killer Cell Functions

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cellulose Hydrogel with Nanopores Boosts Moisture Power

Blocking HIF-1 Shields Retinal Cells from Hypoxia

Auraptene’s Cytotoxic Effects in Leukemia Retracted

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.