• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, June 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Artificial Intelligence

“Cognitive” control to underwater robots

Bioengineer by Bioengineer
May 7, 2015
in Artificial Intelligence
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For the last decade, scientists have deployed increasingly capable underwater robots to map and monitor pockets of the ocean to track the health of fisheries, and survey marine habitats and species. In general, such robots are effective at carrying out low-level tasks, specifically assigned to them by human engineers — a tedious and time-consuming process for the engineers.

underwater

Researchers watch underwater footage taken by various AUVs exploring Australia’s Scott Reef. Courtesy of the researchers

When deploying autonomous underwater vehicles (AUVs), much of an engineer’s time is spent writing scripts, or low-level commands, in order to direct a robot to carry out a mission plan. Now a new programming approach developed by MIT engineers gives robots more “cognitive” capabilities, enabling humans to specify high-level goals, while a robot performs high-level decision-making to figure out how to achieve these goals.

For example, an engineer may give a robot a list of goal locations to explore, along with any time constraints, as well as physical directions, such as staying a certain distance above the seafloor. Using the system devised by the MIT team, the robot can then plan out a mission, choosing which locations to explore, in what order, within a given timeframe. If an unforeseen event prevents the robot from completing a task, it can choose to drop that task, or reconfigure the hardware to recover from a failure, on the fly.

In March, the team tested the autonomous mission-planning system during a research cruise off the western coast of Australia. Over three weeks, the MIT engineers, along with groups from Woods Hole Oceanographic Institution, the Australian Center for Field Robotics, the University of Rhode Island, and elsewhere, tested several classes of AUVs, and their ability to work cooperatively to map the ocean environment.

The MIT researchers tested their system on an autonomous underwater glider, and demonstrated that the robot was able to operate safely among a number of other autonomous vehicles, while receiving higher-level commands. The glider, using the system, was able to adapt its mission plan to avoid getting in the way of other vehicles, while still achieving its most important scientific objectives. If another vehicle was taking longer than expected to explore a particular area, the glider, using the MIT system, would reshuffle its priorities, and choose to stay in its current location longer, in order to avoid potential collisions.
“We wanted to show that these vehicles could plan their own missions, and execute, adapt, and re-plan them alone, without human support,” says Brian Williams, a professor of aeronautics and astronautics at MIT, and principal developer of the mission-planning system. “With this system, we were showing we could safely zigzag all the way around the reef, like an obstacle course.”

Williams and his colleagues will present the mission-planning system in June at the International Conference on Automated Planning and Scheduling, in Israel.

All systems go

When developing the autonomous mission-planning system, Williams’ group took inspiration from the “Star Trek” franchise and the top-down command center of the fictional starship Enterprise, after which Williams modeled and named the system.

Just as a hierarchical crew runs the fictional starship, Williams’ Enterprise system incorporates levels of decision-makers. For instance, one component of the system acts as a “captain,” making higher-level decisions to plan out the overall mission, deciding where and when to explore. Another component functions as a “navigator,” planning out a route to meet mission goals. The last component works as a “doctor,” or “engineer,” diagnosing and repairing problems autonomously.
“We can give the system choices, like, ‘Go to either this or that science location and map it out,’ or ‘Communicate via an acoustic modem, or a satellite link,’” Williams explains. “What the system does is, it makes those choices, but makes sure it satisfies all the timing constraints and doesn’t collide with anything along the way. So it has the ability to adapt to its environment.”

Autonomy in the sea

The system is similar to one that Williams developed for NASA following the loss of the Mars Observer, a spacecraft that, days before its scheduled insertion into Mars’ orbit in 1993, lost contact with NASA.

“There were human operators on Earth who were experts in diagnosis and repair, and were ready to save the spacecraft, but couldn’t communicate with it,” Williams recalls. “Subsequently, NASA realized they needed systems that could reason at the cognitive level like engineers, but that were onboard the spacecraft.”
Williams, who at the time was working at NASA’s Ames Research Center, was tasked with developing an autonomous system that would enable spacecraft to diagnose and repair problems without human assistance. The system was successfully tested on NASA’s Deep Space 1 probe, which performed an asteroid flyby in 1999.

“That was the first chance to demonstrate goal-directed autonomy in deep space,” Williams says. “This was a chance to do the same thing under the sea.”
By giving robots control of higher-level decision-making, Williams says such a system would free engineers to think about overall strategy, while AUVs determine for themselves a specific mission plan. Such a system could also reduce the size of the operational team needed on research cruises. And, most significantly from a scientific standpoint, an autonomous planning system could enable robots to explore places that otherwise would not be traversable. For instance, with an autonomous system, robots may not have to be in continuous contact with engineers, freeing the vehicles to explore more remote recesses of the sea.

“If you look at the ocean right now, we can use Earth-orbiting satellites, but they don’t penetrate much below the surface,” Williams says. “You could send sea vessels which send one autonomous vehicle, but that doesn’t show you a lot. This technology can offer a whole new way to observe the ocean, which is exciting.”

Story Source:

The above story is based on materials provided by MIT News office, Jennifer Chu.

Share14Tweet9Share2ShareShareShare2

Related Posts

blank

Artificial intelligence could help farmers diagnose crop diseases

October 5, 2016
blank

Rats have greater episodic memory than previously thought

October 3, 2016

An algorithm for taxi sharing

September 26, 2016

Artificial intelligence reveals mechanism behind brain tumor

September 20, 2016
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    159 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    75 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    70 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding the Genomic Architecture of Ant Superorganisms

Dr. Andrea Ballabio Receives the Beth Levine Prize in Autophagy Research from UT Southwestern

SwRI’s Angel Wileman Recognized Among Women in Hydrogen 50 for 2025

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.