• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, February 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Co-creating health for humanity: new trends in pharmaceutical interorganizational deals

Bioengineer by Bioengineer
January 24, 2023
in Health
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It is a challenging feat to launch a new drug in the market, given the low probability of success during the research and development (R&D) phase and the high costs involved. In recent times, industry trends in external innovation for drug discovery are rapidly changing.  With an improved understanding of disease biology, decision-making can be more streamlined through the effective use of scientific information.

Connecting for health innovation—improving drug discovery through interorganizational deal networks

Credit: Kota Kodama from Ritsumeikan University

It is a challenging feat to launch a new drug in the market, given the low probability of success during the research and development (R&D) phase and the high costs involved. In recent times, industry trends in external innovation for drug discovery are rapidly changing.  With an improved understanding of disease biology, decision-making can be more streamlined through the effective use of scientific information.

In this quest, researchers in Japan led by Associate Professor Kota Kodama of Ritsumeikan University are uncovering how the trends in interorganizational deals in the pharmaceutical industry are changing to improve R&D productivity and drug discovery. “The network structure of innovation creation in the pharmaceutical industry has changed with the increasing emergence of start-up companies spinning out from academia and research institutions as players in the source of innovation,” explains Dr. Kodama, while discussing their investigations into these changing trends, the results of which were made available online on 27 December 2022 and published in volume 28 issue 3 of  the journal Drug Discovery Today on March 1, 2023.

Their research suggests that the knowledge necessary for breakthrough innovation in drug discovery is more often than not obtained through alliance networks. Over the past decade, large research-based pharmaceutical companies have used research collaborations, innovation incubators, academic centers of excellence, public-private partnerships, mergers and acquisitions (M&As), drug licensing, and corporate venture capital funds as typical methods for external innovation. The researchers now aim to define the changes in the network structure and nature of such alliances that have occurred over the past decade to provide future strategic insights for industry and academic players involved in drug discovery.

Using data from the Cortellis Competitive Intelligence database, the researchers identified nearly 50,000 deals of various kinds related to pharmaceutical R&D across pharmaceutical, digital health software, animal drug, and medical device companies to uncover trends in the creation of new drugs for human use. They also studied the trends of 13 of the largest pharmaceutical companies with annual revenues of more than US$10 billion, who saw an improvement in their CAGR (compound annual growth rate) since 2015. The researchers noticed that the rising CAGR correlated to a significant change in M&A-related deals after 2015, indicating that M&A-related deals drive revenue growth for large pharmaceutical companies.

Furthermore, the number of organizations involved in interorganizational deals has been increasing yearly from 2012 to 2021. Although the number of organizations involved and the number of deals may be increasing, the density of the deal networks is decreasing annually, suggesting that networks are becoming more non-cohesive. The concentration of business relationships between organizations of certain areas in the network changed to dispersion around 2015, and new networks connecting different groups started to form after 2017. These trends are an important illustration of how the industry landscape is gradually evolving away from the traditional network in which large pharmaceutical companies drove drug discovery output. Now, interorganizational deals among more diverse players have become active and are driving R&D productivity for startups in biotechnology and pharmaceuticals.

A clear increase in the number of academia-owned spinouts of advanced technology and expansion of investment in start-ups is a positive sign. The emergence of new chemical modalities, such as biologics, oligonucleotides, and peptides that differ from traditional small molecule drug discovery indicate remarkable changes that have taken place over the past two decades. The trend of increased financing for start-up companies in personalized drug development is beneficial for patent creation and will positively impact innovation creation in the coming years. “The presence of academia to support the technologies of these start-ups is becoming very important, and government and private support and investment in this area is boosting innovation. Our study shows that such medium- and long-term support may ultimately benefit the health and well-being of humankind,” concludes an optimistic Dr. Kodama.

 

***

 

Reference

DOI: https://doi.org/10.1016/j.drudis.2022.103483

 

About Ritsumeikan University, Japan
Ritsumeikan University is one of the most prestigious private universities in Japan. Its main campus is in Kyoto, where inspiring settings await researchers. With an unwavering objective to generate social symbiotic values and emergent talents, it aims to emerge as a next-generation research university. It will enhance researcher potential by providing support best suited to the needs of young and leading researchers, according to their career stage. Ritsumeikan University also endeavors to build a global research network as a “knowledge node” and disseminate achievements internationally, thereby contributing to the resolution of social/humanistic issues through interdisciplinary research and social implementation.

Website: http://en.ritsumei.ac.jp/

 

About Associate Professor Kota Kodama from Ritsumeikan University, Japan
Dr. Kota Kodama has been an associate professor at the Graduate School of Technology Management (MOT), Ritsumeikan University, since 2016. Dr. Kodama completed his master’s degree at Kyushu University Department of Pharmaceutical Sciences and obtained a PhD in Pharmaceutical Sciences from Kyushu University in 2004. He is engaged in a variety of academic, business and projects management, especially in the field of Life Sciences. His areas of specialization are technology management, entrepreneurship, business development and bioinformatics.

 

Funding information
The authors gratefully acknowledge the generous support and assistance of the Fondation France- Japon de École des Hautes Études en Sciences Sociales and Air Liquide. This work was also supported by Grants-in-Aid for Scientific Research (grant numbers 21H00739, 20H01546, and 20K20769) and the AY2022 International Collaborative Research Promotion Program of Ritsumeikan University.



Journal

Drug Discovery Today

DOI

10.1016/j.drudis.2022.103483

Method of Research

Data/statistical analysis

Subject of Research

Not applicable

Article Title

Recent trends in interorganizational deal networks in pharmaceutical and biotechnology industries

Article Publication Date

1-Mar-2023

COI Statement

Kentaro Yashiro is an employee of Ono Pharmaceutical Co., Ltd. None of the authors have any conflicts of interest related to the content of this article.

Share12Tweet8Share2ShareShareShare2

Related Posts

road

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

February 3, 2023
Lifetime Uncertainty and Level of Violence Global Map

Living in a violent setting can result in a shorter, but also a more unpredictable lifespan, according to new research from NYU Abu Dhabi social scientists

February 3, 2023

Harnessing an innate protection against Ebola

February 3, 2023

Signal transmission in the immune and nervous system through NEMO

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

New treatment approach for prostate cancer could stop resistance in its tracks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In