• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

CNIC scientists design an experimental mouse model for investigating the mechanical function of proteins

Bioengineer by Bioengineer
April 28, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The model, published today in Nature Communications, is based on the insertion of the HaloTag-TEV genetic cassette into titin, one of the proteins responsible for the elasticity of skeletal and cardiac muscle

IMAGE

Credit: CNIC

The Molecular Mechanics of the Cardiovascular System group at the Centro Nacional de Investigaciones Cardiovasculares (CNIC), led by Jorge Alegre Cebollada, in partnership with an international scientific team, has generated the first experimental mouse model that allows direct analysis of the mechanical function of proteins in living organisms.

The model, published today in Nature Communications, is based on the insertion of the HaloTag-TEV genetic cassette into titin, one of the proteins responsible for the elasticity of skeletal and cardiac muscle. The HaloTag-TEV cassette combines three key properties. Dr Alegre explained: “Thanks to the introduction of this cassette into the gene, we are able to fluorescently mark the protein, which makes it easy to track the cassette and see where it has inserted correctly.”

But that’s not all: “The cassette includes a target for specific protein lysis, so that the mechanical function of the target protein can be interrupted in a controlled manner at any desired moment, allowing us to study the effect of this interruption.” Finally, the cassette “provides a way to anchor the isolated protein to surfaces, enabling the study of its mechanical properties by single-molecule techniques.”

“All of this helps to establish a bridge between the modulation of protein mechanical properties and observing the consequences of this modulation at a cellular level,” said Dr Alegre.

It is well known that cells and the living organisms they form respond to changes in the environment. But among the environmental conditions to which living beings must adapt, the purely mechanical forces that constantly act upon them are often overlooked. “This relationship between cells and the mechanical components of their environment is extremely important, and explains many phenomena related to disease, such as cancer metastasis and atherosclerosis, which underlies several cardiovascular conditions.”

In recent decades, the development of new technologies has permitted the study of proteins’ mechanical behavior, which is responsible at the molecular level for the ability of cells to sense and generate forces.

These techniques have enabled the characterization of the mechanical properties of individual molecules, studied one by one, and this has transformed knowledge about the relationship between force and biological molecules. However, understanding how this relationship operates in the native environment of the cell was until now not possible.

The story doesn’t stop with titin. The HaloTag-TEV cassette can be inserted into other proteins with a mechanical function, so that in the future it could be used to study other systems, including those related to diverse muscular and cardiac disorders.

###

About the CNIC

The Centro Nacional de Investigaciones Cardiovasculares (CNIC), directed by Dr. Valentín Fuster, is dedicated to cardiovascular research and the translation of knowledge gained into real benefits for patients. The CNIC, recognized by the Spanish government as a Severo Ochoa center of excellence, is financed through a pioneering public-private partnership between the government (through the Carlos III Institute of Health) and the Pro-CNIC Foundation, which brings together 12 of the most important Spanish private companies.

Media Contact
Fátima Lois
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-15465-9

Tags: CardiologyMedicine/Health
Share14Tweet9Share3ShareShareShare2

Related Posts

UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

September 17, 2025

Study Reveals Resistance Training Enhances Nerve Health and Slows Aging Process

September 17, 2025

American College of Chest Physicians Pioneers Initiative to Expand Access to Lifesaving Noninvasive Ventilation for COPD Patients

September 17, 2025

Impact of Soccer Headers on Brain Health: Study Reveals Structural Changes in Brain Folds

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neural Circuitry Driving Autonomic Dysreflexia Unveiled

UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

Widely Available, Affordable Medication Reduces Colorectal Cancer Recurrence Risk by Half

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.