• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, June 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Closer ties for silver clusters

Bioengineer by Bioengineer
December 20, 2016
in Science News
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Reproduced with permission © 2016 American Chemical Society.

Tiny clusters of silver atoms arranged with atomic level precision could become more versatile and useful due to a simpler way to hold them together.

The nanoclusters assemble with the assistance of carbon-based organic ligands that form a shell around the metal atoms.

"Until now, most ligands have been big molecules that bond really strongly to the cluster and make its surface inaccessible to other chemical species," explained Osman Bakr, KAUST associate professor of material science and engineering. The smaller ligands developed at KAUST open new opportunities in nanocluster design and should broaden the chemical uses for such clusters1.

The ligands developed by Bakr and his team are known as hydrides because they have negatively charged hydrogen atoms (or hydride ions) in direct contact with the metal surface. The tiny hydride ions interact with small phosphorus-containing organic molecules known as phosphines to create a shell that protects and stabilizes the cluster.

Crucially, nanoclusters crystallize readily, allowing their structure to be precisely analyzed. Using this structural analysis to experiment with ligand design allows the properties of a nanocluster to be modified with atom-by-atom control.

One very promising potential application for nanoclusters is their use as catalysts to accelerate specific chemical reactions. The smaller ligands allow greater accessibility that widens the scope for reacting chemicals to reach the nanocluster's catalytic surface. The increased availability of that surface also allows other molecules to be deliberately added to assist with catalysis.

To design new catalysts, researchers need to know more about how they work, which is a major motivation for the KAUST team's work.

"These atomically precise nanoclusters are the key to understanding catalysis because, as we alter their size and shape, we can unlock the way in which catalysis occurs," said Bakr.

Because the electrons of the metal atoms are shared across the entire cluster, they also have unique optical and electronic properties. This allows the clusters to absorb light of many wavelengths and to remain in an energetically excited state for a long time.

Bar's group's members are pioneers in giving silver nanoclusters properties that were previously only seen in the much more expensive clusters made of gold. This could be vital for transferring research findings into economically viable applications.

Bakr noted, "The next challenge is to see if we can apply these innovations to other metals and greatly widen their usefulness."

###

Media Contact

Michelle D'Antoni
[email protected]

http://kaust.edu.sa/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Organoid Model Reveals Residual Colorectal Cancer Stem Cells

June 20, 2025
Terahertz Spectroscopy Maps Buried PN Junction Depths

Terahertz Spectroscopy Maps Buried PN Junction Depths

June 20, 2025

Revolutionizing Rehabilitation: Virtual Reality Offers New Hope for Stroke Survivors to Recover Movement

June 20, 2025

Innovative Nanoparticles Enable Safer, More Efficient Drug Delivery

June 20, 2025
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    161 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    76 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    71 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Organoid Model Reveals Residual Colorectal Cancer Stem Cells

Terahertz Spectroscopy Maps Buried PN Junction Depths

Revolutionizing Rehabilitation: Virtual Reality Offers New Hope for Stroke Survivors to Recover Movement

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.