• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Clinical trial explores new therapeutic for type 1 diabetes

Bioengineer by Bioengineer
December 6, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

First NIH-funded clinical trial in the US using umbilical cord derived mesenchymal stem cells for the treatment of patients with new onset type 1 diabetes

IMAGE

Credit: Medical University of South Carolina


Type 1 diabetes (T1D) is a chronic condition in which the body’s own immune system attacks and destroys beta cells in the pancreas. Once the beta cells are destroyed, the pancreas can no longer produce insulin. Currently, there is no cure for T1D and treatment focuses on managing blood sugar levels.

Researchers at MUSC, including Hongjun Wang, Ph.D., tenured professor in the Department of Surgery, hope to offer patients a better alternative.Wang joined MUSC eight years ago, believing the excellence in islet cell transplantation, a clean cell facility, and a focus on population health provided the perfect opportunity for her to conduct research that she hopes will lead to a cure for patients with T1D.

“I am very grateful Dr. Baliga recruited me eight years ago,” said Wang. “MUSC provides the resources to build on what I learned at Harvard under my mentor, Fritz Bach, M.D., a brilliant transplant immunologist, and apply it to my work in islet cell transplantation and T1D.”She adds the opportunity to work collaboratively with other investigators who are also passionate about translating the basic science to solutions for patients suffering from diabetes is important.

“I am very lucky to work with such passionate people like Charlie Strange, M.D., Deborah Bowlby, M.D. and Gary Gilkeson, M.D., among others,” said Wang. Strange serves as the co-investigator of a $2M National Institutes of Health grant to explore novel treatments for patients with T1D using animal models, combining Wang’s expertise in islet biology and immunology and Strange’s expertise in AAT biology and genomics. This grant is part of a series of NIH funded grants in the Wang Lab, one of the most highly funded labs in the Department of Surgery. Currently the Wang Lab has four NIH funded grants running concurrently as well as a Veterans Affairs Administration Merit Award and private funding.

“The beauty of our lab at MUSC is the ability to do translational research,” said Wang. “We can study the mechanisms of the disease on the bench and then have the ability to move to the bedside in a clinical trial.” This fall, their effort in the lab moved the science forward and they are now enrolling patients in a clinical trial to study mesenchymal stem cells (MSCs) from umbilical cord (UC-MSCs) as a possible therapeutic for patients with early onset T1D. The use of mesenchymal stem cells (MSCs) as a therapeutic tool to reduce progression of T1D represents a promising new intervention.

A pilot clinical trial in Sweden showed that a single infusion of autologous bone marrow derived MSCs preserved insulin secretion in adult patients with new onset T1D.

“MSCs derived from umbilical cord (UC-MSCs) show greater cell yield, a less invasive harvesting procedure with associated reduced morbidity, and stronger immunosuppressive and regenerative potential and are a popular source for cell therapy,” said Wang. “Based on the above principles, MUSC is embarking on a randomized, double blind, placebo controlled single center clinical trial to determine the efficacy of UC-MSC therapy in patients with new onset T1D.”

Contingent on enrollment of six newly diagnosed T1D adult patients, the NIH funded trial will be $3.5M over a five year period.

The clinical trial hypothesis is that systemic administration of MSCs freshly expanded ex vivo reduces progression of diabetes and preserves insulin secretion through restoring normal function of the immune system and preservation/improvement of pancreatic cells in patients with T1D.

###

To learn more about the clinical trial, visit http://www.stemcelldiabetes.com

Media Contact
Heather Woolwine
[email protected]
843-792-7669

Original Source

https://medicine.musc.edu/departments/surgery/news/newsletter/fall-2019/clinical-trial-explores-new-therapeutic-for-type-1-diabetes

Tags: Clinical TrialsDiabetesEndocrinologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

July 28, 2025
Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

July 28, 2025

Bariatric Surgery’s Impact on Circulating S100A9

July 28, 2025

Agomelatine Restores Mitochondria, Rescues Oocyte Meiosis

July 28, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    54 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Microbial Risk Assessment Through Detection Technology Evolution

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.