• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Climate patterns linked in Amazon, North and South America, study shows

Bioengineer by Bioengineer
October 9, 2020
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A tree-ring chronology developed by U of A researchers established a connection between precipitation in the Amazon and the Americas

IMAGE

Credit: Russell Cothren

FAYETTEVILLE, Ark. -University of Arkansas researchers have established a link between climate patterns in the Amazon and large parts of North and South America using their newly developed tree-ring chronology from the Amazon River basin.

The discovery helps researchers better understand large-scale climate extremes and the impact of the El Niño phenomenon.

Tree growth is a well-established climate proxy. By comparing growth rings in Cedrela odorata trees found in the Rio Paru watershed of the eastern Amazon River with hundreds of similar chronologies in North and South America, scientists have shown an inverse relationship in tree growth, and therefore precipitation patterns, between the areas. Drought in the Amazon is correlated with wetness in the southwestern United States, Mexico and Patagonia, and vice versa.

The process is driven by the El Niño phenomenon, which influences surface-level winds along the equator, researchers said. El Niño is the name given to a large-scale irregularly occurring climate pattern associated with unusually warm water in the Pacific Ocean.

“The new Cedrela chronologies from the Amazon, when compared with the hundreds of tree-ring chronologies in temperate North and South America, document this Pan American resonance of climate and ecosystem extremes in the centuries before widespread deforestation or human-caused climate change,” said Dave Stahle, Distinguished Professor of geosciences and first author of a study documenting the findings in the journal Environmental Research Letters.

The connection was not documented until researchers at the University of Arkansas Tree Ring Laboratory, along with colleagues from Brazil and Argentina, developed rainfall reconstructions from growth rings in Cedrela trees. Most rainfall records in the Amazon only date back about 70 years, but Cedrelas live for 200 to 300 years, providing valuable rainfall proxies that pre-date human-influenced climate change. Their work in the Amazon is documented in a short video, and also on a dedicated web site.

In the past 40 years, drought and flood extremes have increased in the Amazon basin, the researchers noted, raising the question of whether human-induced climate change and deforestation are affecting Amazon climate. While that remains an open question, the longer Cedrela-based precipitation record indicates that periods of rainfall extremes occurred in the past and the current extremes might be partly due to natural climate rhythms.

The study will help researchers better understand an area of unequaled biodiversity. The Amazon is home to an estimated 16,000 species of trees and one-tenth of all known species found on the planet, Stahle noted. “The long climate history written in the growth rings of old Cedrela trees in Amazonia will surely be important to the sustainability of the biome.”

###

Media Contact
Bob Whitby
[email protected]

Original Source

http://wp.me/p9yc4N-5C1

Related Journal Article

http://dx.doi.org/10.1088/1748-9326/ababc6

Tags: Climate ChangeClimate ScienceEarth ScienceEcology/EnvironmentForestryPlant SciencesWeather/Storms
Share12Tweet8Share2ShareShareShare2

Related Posts

circ_0020850: Key Indicator for Stroke Recovery

August 30, 2025

Examining DnaJ Gene Family’s Response to Salt Stress

August 30, 2025

New Single-Cell Atlas Unveils Starlet Anemone Secrets

August 30, 2025

Hydrophobicity in Citric Acid-Starch Nanoparticles for Fatty Acid Encapsulation

August 30, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Predicting Hodgkin’s Lymphoma Response with PET/CT

Predicting Hodgkin’s Lymphoma Response with 18FDG PET/CT

Advancing Normothermic Perfusion in Organ Donation Strategies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.