• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Climate change drives plants to extinction in the Black Forest in Germany, study finds

Bioengineer by Bioengineer
October 28, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Thomas Sperle

Climate change is leaving its mark on the bog complexes of the German Black Forest. Due to rising temperatures and longer dry periods, two plant species have already gone extinct over the last 40 years. The populations of many others have decreased by one third. In the next couple of decades ten more species could become extinct, researchers from Martin Luther University Halle-Wittenberg (MLU) and the German Centre for Integrative Biodiversity Research (iDiv) write in Diversity and Distributions.

There are only a few healthy ombrotrophic bogs, raised bogs and spring mires left in Germany. They used to cover large swathes of north-western Germany. Today they are still found in the foothills of the Alps and on low mountain ranges, for example in the Black Forest. They are very sensitive ecosystems that are highly dependent on certain climatic conditions. “These bogs and spring mires are seismographs of climate change. They react very sensitively to small changes in precipitation and temperature,” says professor Helge Bruelheide, a geobotanist at MLU and a member of iDiv. Bog complexes also have a very high proportion of endangered plant and animal species.

Bruelheide joined forces with Thomas Sperle, a biologist and wetlands expert, to investigate the trends in biodiversity in bogs and spring mires in the southern region of the Black Forest. The two scientists drew on data from the 1970s about the vegetation of 124 complete bogs. Sperle completely re-surveyed nearly all of the areas over a period of four years. “It is really tricky to prove the extinction of a species for an entire bog. I had to carefully scan the whole area to ensure that specific individuals were not overlooked,” says Sperle. Bruelheide then used the data to analyse the 88 plant species. Two species have already become extinct. The population size of another 37 have decreased by about one third since the 1970s. This has disproportionately affected so-called specialist species that are adapted to specific climatic conditions and make up a large portion of the biodiversity in Germany. However, there were also 46 so-called generalist species that have coped better with the changes and whose numbers have increased over time.

The researchers also checked whether their observations could be explained by other factors, such as the size of the bogs, the distance from one bog to another and whether adjacent areas were used for agriculture. However, no factor could explain the data better than climate change. “Our analyses clearly show that species are declining and dying out in places where it is drier and warmer for longer periods of time in the summer. This is the first indication that climate change has already arrived in our latitudes,” concludes Bruelheide. “It is getting noticeably drier and hotter in the Black Forest, which is why this change is evident there. Presumably, the same thing will happen in other low mountain ranges such as the Harz. Our study can serve as an example for other regions in Germany, but also for other habitats and groups of species.”

In their study, the biologists predict that ten more specialist species will disappear by 2045 if conditions progress as expected. This is an alarming sign as there is no way to counteract this extinction in raised bogs and spring moors. “You cannot really replace missing rain in those bogs,” says Bruelheide.

###

The new study is an outcome of the iDiv project “sMon – Biodiversity Trends in Germany”. Reliable data on the development of biodiversity are compiled and analysed throughout Germany as part of this initiative. To this end, researchers team up with public institutions and numerous nature conservationists.

The study received funding via iDiv by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

About the study:
Sperle T., Bruelheide H.: Climate change aggravates bog species extinctions in the Black Forest (Germany). Diversity and Distributions (2020).
DOI: 10.1111/ddi.13184

Media Contact
Tom Leonhardt
[email protected]

Original Source

https://pressemitteilungen.pr.uni-halle.de/index.php?modus=pmanzeige&pm_id=5131

Related Journal Article

http://dx.doi.org/10.1111/ddi.13184

Tags: BiodiversityBiologyClimate ChangeEarth ScienceEcology/EnvironmentPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Museum Researchers Excited by the Discovery of Six New Bat Species

October 27, 2025
blank

Goat Genome Study Uncovers Genes for Adaptation

October 26, 2025

Exploring TIFY Family Genes in Panax Notoginseng

October 26, 2025

Genetic Diversity and Cytotype Insights in Platostoma

October 26, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1285 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    196 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dipeptide’s Impact on Ionic Liquid Micellization Explored

Fluid Strategies in Preterm Infants with PDA

Unlocking Henna’s Healing Power: A Breakthrough Chemical from Lawsonia inermis Fights Fibrosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.