• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, March 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cleveland researchers reveal how oxygen is delivered to tissues, open door to new class of drugs

Bioengineer by Bioengineer
March 1, 2023
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CLEVELAND—Cardiovascular medicine, hematology and pulmonary medicine may soon have the first-ever therapies to correct poor tissue oxygenation, a key driver of disease in millions, including peripheral artery disease, sickle cell disease, heart failure, stroke, emphysema and many others.

Blood Vessels

Credit: Canva

CLEVELAND—Cardiovascular medicine, hematology and pulmonary medicine may soon have the first-ever therapies to correct poor tissue oxygenation, a key driver of disease in millions, including peripheral artery disease, sickle cell disease, heart failure, stroke, emphysema and many others.

The breakthrough follows a landmark discovery from investigators at Harrington Discovery Institute at University Hospitals (UH) and Case Western Reserve University School of Medicine. The research team showed that a modified version of hemoglobin, termed S-nitrosohemoglobin, senses areas with insufficient oxygen, and then restores blood flow for oxygenation. The study recently published in PNAS.

“Our textbooks focus on how much oxygen is carried in the blood. But this work reveals, for the first time in humans, that it’s really not about oxygen, but about nitric oxide when it comes to delivering oxygen. Critically, the nitric oxide must be carried by hemoglobin, in the form of S-nitrosohemoglobin, to be effective. This opens up an entirely new line of drug development,” said Jonathan S. Stamler, MD, senior author of the study, President, Harrington Discovery Institute at UH, Robert S. and Sylvia K. Reitman Family Foundation Distinguished Professor of Cardiovascular Innovation, and Professor of Medicine and Biochemistry at UH and Case Western Reserve School of Medicine.

Correcting inadequate tissue oxygenation has been a longstanding goal of medicine. Scientists have known for some time that oxygen levels in the blood don’t predict oxygen delivery to tissues, and that oxygen availability is almost never the problem.

“We have a major mystery in medicine,” Dr. Stamler explained. “Even when people die from ‘low oxygen’ they still have lots of oxygen left in the bloodstream. Yet medications that increase blood flow are unable to increase oxygen delivery. There are millions of patients across both major and rare diseases that have disorders of oxygen delivery, and we have no way to improve that situation.”

Drugs that improve blood flow have so far failed to improve oxygen delivery. So, increasing oxygen doesn’t work and increasing blood flow hasn’t worked.

In the new study, the researchers identify S-nitrosohemoglobin as a unique vasodilator that not only opens blood vessels but produces major increases in tissue oxygenation. Further, in both mice and humans–including patients with peripheral artery disease, sickle cell disease, heart failure, stroke and emphysema–impairments in tissue oxygenation were found to correlate with levels of S-nitrosohemoglobin. A low level resulted in poor tissue oxygenation.

“This study shows that you must vasodilate through hemoglobin if you want to get oxygen to tissues, because hemoglobin knows precisely where in the body oxygen is low, and then it adjusts itself to give off the vasodilator nitric oxide in proportion to need,” Dr. Stamler said. “Other vasodilators dilate vessels everywhere, and steal blood flow from places that need it most.”

Stamler and colleagues are currently working to develop drugs that modify hemoglobin with nitric oxide to form S-nitrosohemoglobin. These new drugs are increasing tissue oxygenation for the very first time, even when oxygen levels in the blood are low.

He emphasized, “It’s almost never about amounts of oxygen in medical conditions. It’s about blood flow in little blood vessels. If you don’t have S-nitrosohemoglobin, you cannot oxygenate. This is an entirely new perspective on tissue oxygenation, and one that hopefully solves a major problem in medicine.”

###

Reynolds, J.D., et al. Control of tissue oxygenation by S-nitrosohemoglobin in human subjects. PNAS (2023). DOI: 10.1073/pnas.2220769120.

About Harrington Discovery Institute at University Hospitals
The Harrington Discovery Institute at University Hospitals in Cleveland, OH – part of The Harrington Project for Discovery & Development – aims to advance medicine and society by enabling our nation’s most inventive scientists to turn their discoveries into medicines that improve human health. The institute was created in 2012 with a $50 million founding gift from the Harrington family and instantiates the commitment they share with University Hospitals to a Vision for a ‘Better World’. For more information, visit: HarringtonDiscovery.org.

About University Hospitals / Cleveland, Ohio
Founded in 1866, University Hospitals serves the needs of patients through an integrated network of 21 hospitals (including five joint ventures), more than 50 health centers and outpatient facilities, and over 200 physician offices in 16 counties throughout northern Ohio. The system’s flagship quaternary care, academic medical center, University Hospitals Cleveland Medical Center, is affiliated with Case Western Reserve University School of Medicine, Northeast Ohio Medical University, Oxford University and the Technion Israel Institute of Technology. The main campus also includes the UH Rainbow Babies & Children’s Hospital, ranked among the top children’s hospitals in the nation; UH MacDonald Women’s Hospital, Ohio’s only hospital for women; and UH Seidman Cancer Center, part of the NCI-designated Case Comprehensive Cancer Center. UH is home to some of the most prestigious clinical and research programs in the nation, with more than 3,000 active clinical trials and research studies underway. UH Cleveland Medical Center is perennially among the highest performers in national ranking surveys, including “America’s Best Hospitals” from U.S. News & World Report. UH is also home to 19 Clinical Care Delivery and Research Institutes. UH is one of the largest employers in Northeast Ohio with more than 30,000 employees. Follow UH on LinkedIn, Facebook and Twitter. For more information, visit UHhospitals.org.

About Case Western Reserve University
Case Western Reserve University is one of the country’s leading private research institutions. Located in Cleveland, we offer a unique combination of forward-thinking educational opportunities in an inspiring cultural setting. Our leading-edge faculty engage in teaching and research in a collaborative, hands-on environment. Our nationally recognized programs include arts and sciences, dental medicine, engineering, law, management, medicine, nursing and social work. About 5,800 undergraduate and 6,300 graduate students comprise our student body. Visit case.edu to see how Case Western Reserve thinks beyond the possible.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2220769120.

Article Title

Control of tissue oxygenation by S-nitrosohemoglobin in human subjects

Article Publication Date

22-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

The Institut Pasteur and the University of São Paulo sign articles of association to establish the Institut Pasteur in São Paulo

The Institut Pasteur and the University of São Paulo sign articles of association to establish the Institut Pasteur in São Paulo

March 31, 2023
The Schmidt objektive produces detailed images of neurons in a mouse brain.

Scallop eyes as inspiration for new microscope objectives

March 31, 2023

White-tailed deer blood kills bacteria that causes Lyme disease

March 30, 2023

New procedure helps patients avoid leg amputation

March 30, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    68 shares
    Share 27 Tweet 17
  • Extinction of steam locomotives derails assumptions about biological evolution

    48 shares
    Share 19 Tweet 12
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Harnessing nature to promote planetary sustainability

New study offers clues to how cancer spreads to the brain

The Institut Pasteur and the University of São Paulo sign articles of association to establish the Institut Pasteur in São Paulo

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In