• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Clemson researcher creating perennial grasses that need less water and are fuel source

Bioengineer by Bioengineer
October 16, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Clemson College of Science


CLEMSON, South Carolina — Clemson University College of Science Professor Hong Luo has received a $500,000 grant from the U.S. Department of Agriculture National Institute of Food and Agriculture to develop genetically improved and more robust turfgrass and switchgrass. These perennial plants represent a multibillion-dollar segment of the U.S. agricultural economy.

Covering millions of acres on golf courses, athletic fields, cemeteries and parks nationwide, turfgrasses require large amounts of water to remain healthy, which leaves them particularly vulnerable to extreme heat and drought. “We want to develop technologies that improve turfgrass so it becomes more stress-resistant,” said Luo, a professor in the department of genetics and biochemistry. “If we can genetically improve the plants then they will need much less water.”

The tall, hearty switchgrass plant is a promising biofuel crop that could someday produce greater ethanol yields than corn. In addition, switchgrass is considered a weed and can grow in poor soil conditions and requires less water and fertilizer than corn.

A key challenge to engineering better turf and switchgrass is preventing lab-engineered genes from escaping into the non-modified grasses or weeds growing in nearby fields. This type of transfer could have unpredictable environmental consequences. Scientists agree that one of the most effective ways to prevent this spillover is to produce completely sterile grass plants.

“The purpose of this newly funded research is to develop a molecular strategy and achieve trans-gene containment, while producing a clean final product or plant that is environmentally safe,” Luo said.

Luo’s approach to containing the engineered genes is to integrate two site-specific DNA recombination systems with total sterility induction mechanisms in the final transgenic product.

The first line will contain three active genes for Cre recombinase, hygromycin resistance (hyg) and endonuclease Cas9, and an inactive RNAi expression cassette for a flowering control gene, FLO/LFY homolog. The second line will contain an active herbicide resistance gene bar, recombinase gene phiC31 and FLO/LFY homolog gene guide RNA (sgRNA), and an inactive stress-regulating rice SUMO E3 ligase gene, OsSIZ1.

When Luo cross-pollinates the two lines in the lab, certain genes will activate and others will be removed, resulting in a new genetic line that is completely sterile and more stress-resistant. These new plants will not produce pollen or seeds, making it impossible for the modified genes to spread in the wild.

Luo anticipates having a genetically modified new line ready for testing at the end of the four-year research project. If all goes well, the new transgenic line would then be ready for the stringent U.S. Department of Agriculture (USDA) field tests before it could potentially be commercialized.

Luo is familiar with the development and testing process. Before joining the Clemson faculty, he was the director of research at HybriGene Inc., where he led the development of the first genetically engineered, environmentally safe, male-sterile and herbicide-resistant turfgrass. He also helped create a new method for hybrid crop production using site-specific DNA recombination systems.

###

This material is based upon work supported by the U.S. Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) under Grant No. 2019-33522-30102. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NIFA.

Media Contact
Laura Schmitt
[email protected]
864-656-9348

Original Source

https://newsstand.clemson.edu/mediarelations/clemson-researcher-developing-perennial-grasses-that-could-reduce-water-use-and-be-fuel-source/

Tags: Agricultural Production/EconomicsAgricultureBiochemistryBiotechnologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025
blank

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Drivers of Corporate Governance in Burundi’s Cooperatives

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.