• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Cleaner air, less soil pollution: Unintended but beneficial side effect of Clean Air Act

Bioengineer by Bioengineer
March 2, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Yuepeng Pan

Removal of pollutants from the air, or atmospheric deposition, is a natural cleaning mechanism. However, the removed toxic matters don’t just disappear on the Earth. China’s Soil Pollution Survey released in 2014 shows that 19.4% of the Chinese farmland soil was polluted and 82% of pollutant was toxic heavy metals such as cadmium, which can cause chronic health problems.

Atmospheric deposition is an important source of these heavy metals in the soil but it tends to be neglected. Unlike sources from irrigation water, sewage sludge, fertilizers and livestock manures, atmospheric deposition can’t easily be perceived. And the paucity of measurements also makes it difficult to track what happens to heavy metals when they fall from the air to the soil.

Earlier in 2013, a series of control measures was launched to improve air quality in China. As a consequence, the concentrations of fine particles and sulfate aerosols were reduced significantly during 2013 to 2017.

Dr. Yuepeng Pan with the Institute of Atmospheric Physics at the Chinese Academy of Sciences was a researcher dedicated to tracking atmospheric processing and deposition of air pollutants and their impacts on ecosystem. He was greatly encouraged by the positive effect of the Clean Air Act and meanwhile he wondered, “Will the Clean Air Act also affect the atmospheric deposition? If yes, what implication can we get?”

In a recent study published in Atmosphere, Dr. Pan and his group tracked the atmospheric depositions of heavy metals at an agricultural site of rural Beijing. They found that the deposition flux of heavy metals that exist entirely in fine particles declined significantly compared to those that exist in coarse particulate form, indicating that the Clean Air Act implemented in recent years were highly effective, with beneficial “side effect” in reducing ambient heavy metals from anthropogenic emissions.

Pan also noticed that while the bulk deposition flux of heavy metals declined substantially compared to the records ten years ago, the current deposition flux of lead is still higher than that reported in Europe. In addition, Pan and his team found that the annual bulk deposition flux of heavy metals tended to decrease during 2017-2020, coinciding with the annual variations of particulate matter. They attributed this decline to the fluctuations of the emissions from their major sources rather than to precipitation controlling the deposition processes.

“This beneficial side effect of Clear Air Act is totally unintended, but from this we can learn that to further reduce the airborne heavy metals in the North China Plain, future control measures should pay more attention to soil/dust, biomass burning, coal combustion and industrial emissions,” Pan suggested, “because these sources contributed to ~90% of chemical components in atmospheric depositions. ”

###

Media Contact
Ms. Zheng Lin
[email protected]

Original Source

http://english.iap.cas.cn/home/News/202103/t20210302_263980.html

Related Journal Article

http://dx.doi.org/10.3390/atmos12020283

Tags: AgricultureAtmospheric ScienceChemistry/Physics/Materials SciencesPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

August 3, 2025
Bright Excitons Enable Optical Spin State Control

Bright Excitons Enable Optical Spin State Control

August 3, 2025

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    51 shares
    Share 20 Tweet 13
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nano- and Micro-Polystyrene Impact Gut Cells, Neurons

Adolescents Face Cancer’s Impact on Identity, Sexuality

Critical 70% CO2 Threshold for Viable Geological Storage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.