• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, December 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

City of Hope scientists leverage interference between signaling pathways for cancer treatment

Bioengineer by Bioengineer
July 22, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Based on that research, new drug combinations aim to intercept cancer development

IMAGE

Credit: City of Hope

DUARTE, Calif. — In order for cancer to form in the human body, normal cells must acquire multiple mutations before they develop toward the disease. It was previously believed that these mutations acted in concert in the progression of cancer. But a new Nature study led by City of Hope’s Markus Müschen, M.D., Ph.D., chair of the Department of Systems Biology and The Norman and Sadie Lee Foundation Professor in Pediatrics, uncovered a new aspect of this theory.

In a paper published today, Müschen and an international team of researchers outline their findings that individual mutations only promote progression toward leukemia if they converge on one single pathway. In addition, some mutations actually generate “noise” that drown out central elements of cancer development.

“Surprisingly, mutations that are not aligned with the central cancer pathway but instead promote growth and survival in divergent directions are counterproductive and even prevent overt transformation into cancer,” said Müschen, who is the corresponding author of the new study. “The concept of multistep cancer progression suggested that acquisition of additional mutations would invariably promote cancer, but we found that many of these mutations, in fact, lead to a dead end and stop cancer progression rather than promoting it.”

The team reached this conclusion after analyzing 1,148 patient-derived B cell leukemia samples to see how mutations either cooperated or antagonized each other. Current targeted therapies in cancer are based mainly on suppressing the principal driver of cancer, but the study’s findings offer a previously unrecognized strategy to enhance treatment responses.

As a strategy for preventing drug resistance and relapse, Müschen and his colleagues explored an alternative approach based on reactivating suppressed pathways in order to interfere with the principal oncogenic driver and potentially amplify treatment responses.

“We have developed drug combinations that would mimic these effects,” Müschen said. “Like a mutation that activates a divergent pathway, we found drugs to reactivate pathways that diverge from the central oncogenic driver to disrupt oncogenic signal transduction in these cells.”

Müschen and his team are now testing various drug combinations.

“In these combinations, one drug directly inhibits the central oncogenic driver, while the second drug reactivates divergent pathways that were silenced during the transformation process,” Müschen said. “If successful for leukemia, we may be able to test this approach for the treatment of other cancers.”

###

The study, titled “Signalling input from divergent pathways subverts B-cell transformation,” features additional City of Hope authors and researchers from the Dana Farber Cancer Institute and Harvard Medical School, University of California San Francisco, University of Cambridge, University of Pittsburgh Drug Discovery Institute, University of Eastern Finland and Tampere University Hospital in Finland. Portions of the work were supported by a National Cancer Institute Outstanding Investigator Award (R35CA197628), The Leukemia & Lymphoma Society and the Howard Hughes Medical Institute.

About City of Hope

City of Hope is an independent biomedical research and treatment center for cancer, diabetes and other life-threatening diseases. Founded in 1913, City of Hope is a leader in bone marrow transplantation and immunotherapy such as CAR T cell therapy. City of Hope’s translational research and personalized treatment protocols advance care throughout the world. Human synthetic insulin and numerous breakthrough cancer drugs are based on technology developed at the institution. A National Cancer Institute-designated comprehensive cancer center and a founding member of the National Comprehensive Cancer Network, City of Hope is the highest ranked cancer hospital in the West, according to U.S. News & World Report’s Best Hospitals: Specialty Ranking. Its main campus is located near Los Angeles, with additional locations throughout Southern California. For more information about City of Hope, follow us on , , YouTube or Instagram.

Media Contact
Letisia Marquez
[email protected]

Original Source

https://www.nature.com/articles/s41586-020-2513-4

Tags: cancerCollaborationMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

BreeZe: Innovative Self-Management Tool for Burn Survivors

December 27, 2025

Baby Oil Eases Itch and Sleep in Uremic Patients

December 27, 2025

Impact of Vegan Diet and Resistance Exercise on Muscle Volume

December 26, 2025

Long Non-Coding RNAs: Key Players in NSCLC Immunity

December 26, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

BreeZe: Innovative Self-Management Tool for Burn Survivors

Advanced Fault Detection in Pump Impellers Using EMD

Pichia kluyveri Compounds Combat Cacao Pathogen Moniliophthora roreri

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.