• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Circular RNA regulates neuronal differentiation by scaffolding an inhibitory transcription complex

Bioengineer by Bioengineer
November 13, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Christian Kroun Damgaard and Anne Kruse Hollensen.

In a screening for a functional impact to the neuronal differentiation process, Danish researchers identified a specific circular RNA, circZNF827, which surprisingly “taps the brake” on neurogenesis. The results provide an interesting example of co-evolution of a circRNA, and its host-encoded protein product, that regulate each other’s function, to directly impact the fundamental process of neurogenesis.

Correct timing and delicate control of neuronal differentiation is essential for development of a functional nervous system. These events establish a fine-tuned balance between the ability of stem cells to grow/divide and the neuronal progenitors to eventually exit the cell cycle and emerge as mature neurons. A variety of genes become up- or downregulated upon differentiation, giving rise to both neuron-specific proteins and ribonucleic acids (RNAs), including circular RNAs (circRNAs). This class of circRNAs has until recently escaped conventional detection, although these molecules are highly expressed in the mammalian brain. However, the functional roles of brain-expressed circRNAs remain virtually unknown.

In a study, spearheaded by postdoc Anne Kruse Hollensen and led by Associate Professor Christian Kroun Damgaard, Molecular Biology and Genetics, Aarhus University, thousands of circRNAs were identified when stem cells become differentiated into mature neurons. In a screening for a functional impact to the differentiation process, the authors identified a specific circRNA, circZNF827, which surprisingly “taps the brake” on neurogenesis.

Various biochemical and cell biological assays, revealed that circZNF827 mechanistically functions as a scaffold for a complex of RNA-binding proteins, including its own host-gene-encoded protein, ZNF827, and two known transcriptional regulators, hnRNP K and L (Figure 1). Despite being localized mostly to the cell cytoplasm, circZNF827 apparently “moonlights” in the nucleus, where it nucleates these transcription factors to specific neuronal genes (e.g. NGFR), and hence, repress their expression (Figure 1).

The results contribute to the molecular understanding of neurogenesis and in particular how abundant brain-specific circRNAs tap into this fundamental process.

###

The results have just been published in the international journal eLife.

Anne Kruse Hollensen, Henriette Sylvain Thomsen, Marta Lloret-Llinares, Andreas Bjerregaard Kamstrup, Jacob Malte Jensen, Majbritt Luckmann, Nanna Birkmose, Johan Palmfeldt, Torben Heick Jensen, Thomas B Hansen, Christian Kroun Damgaard

“circZNF827 nucleates a transcription inhibitory complex to balance neuronal differentiation”.

DOI: https://doi.org/10.7554/eLife.58478

For further information, please contact

Associate Professor Christian Kroun Damgaard

Department of Molecular Biology and Genetics

Aarhus University, Denmark

[email protected] – mobile +45 29888670

Media Contact
Associate Professor Christian Kroun Damgaard
[email protected]

Original Source

https://mbg.au.dk/en/news-and-events/news-item/artikel/a-circular-rna-regulates-neuronal-differentiation-by-scaffolding-an-inhibitory-transcription-complex/

Related Journal Article

http://dx.doi.org/10.7554/eLife.58478

Tags: BiochemistryBiologyBiotechnologyCell BiologyGeneticsMicrobiologyMolecular Biologyneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

LHAASO Sheds Light on the Origin of the Cosmic Ray “Knee” Phenomenon

November 16, 2025
Metal-Hydroxyls Drive Proton Transfer in O–O Formation

Metal-Hydroxyls Drive Proton Transfer in O–O Formation

November 15, 2025

What Insights Do Polymers Offer for Advancing Alzheimer’s Disease Treatment?

November 15, 2025

Breakthrough: Lead-Free Alternative Unveiled for Key Electronics Component

November 15, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Solutions: Combatting Loneliness in Older Adults

Multi-Omics Unveils Epigenetic Dynamics in Skin Cancer

Roy Adaptation Model Boosts Elderly Health in Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.