• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Chloride-channel in muscle cells provides new insights for muscle diseases

Bioengineer by Bioengineer
April 30, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Small molecules such as hormones and ions are constantly transported in and out from our cells. This regulates what the cells do in our bodies. That is also why many researchers try to understand what controls the different channels in our cells. They have now greatly improved this understanding for muscle cells.

In a new study, an international and inter-disciplinary team involving researchers from the Faculty of Science and the Faculty of Health and Medical Sciences at the University of Copenhagen have mapped the structure of a channel that transports chloride into our muscle cells. Detailed structures of the chloride channel will provide vital information in the quest to fully understand its regulation and thereby optimize development of better treatments of important diseases such as ALS, SMA or Myasthenia gravis.

“This channel in the muscle cells may be essential for the group of illnesses we call neuromuscular diseases. That applies, for instance, to ALS, which many people might know from the late physicist Stephen Hawking. Others have discovered that blocking the channel can alleviate the symptoms of ALS. Our new findings will spark on-going development efforts to block the channel,” says Pontus Gourdon, Associate Professor at Department of Biomedical Sciences.

Cryo-electron microscopy

The researchers have investigated proteins that exist in the cell membranes of human cells using a state-of-the-art so-called cryo-electron microscope. It uses rays of electrons to visualise the 3D-structures of different biological molecules.

In this instance, the researchers have taken what one might call a 3D-photography of this chloride-channel in muscle cells. Visualisations like these pave the way to more efficient drug development because they allow a more rational effort on medical compounds that can bind to that specific 3D-structure.

NMD Pharma

Previous work from Aarhus University has revealed that the chloride-channel is critical for maintenance of skeletal muscle function during physical activity, and this led to the formation of NMD Pharma, a pharmaceutical company that is pursuing new treatments for neuromuscular disorders by targeting the chloride channel.

The researchers have now initiated a collaboration with NMD Pharma that will use the new knowledge for drug development. A postdoc from the research group at the university will collaborate closely with scientists of NMD Pharma to help make the most of the new findings.

Value in society

The new post-doc employment is part of the public-private partnership called BRIDGE between university and industry. The goal is to make sure that knowledge from research results makes it beyond scientific publications and has a positive impact in society. The program is supported by the Novo Nordisk Foundation.

“We are extremely proud of the fact that our research might lead to real impact in society through this collaboration. And also of the fact that the industry can see the values of our findings,” says Pontus Gourdon.

He emphasizes that drug development can take a long time and that approval of new drugs is no quick process either.

The new results are especially relevant for neuromuscular diseases such as Thomsen’s disease.

It is a heritable disease named after the Danish physician Asmus Julius Thomas Thomsen who described the disease in 1876. Many in his family, including himself, suffered from the disease.

###

The study is funded by The Lundbeck Foundation, Knut and Alice Wallenbergs Foundation, The Carlsberg Foundation and the Novo Nordisk Foundation.

The new study is published in the scientific journal PLOS Biology. Read the scientific article: “Structure of the human ClC-1 chloride channel”.

Media Contact
Pontus Gourdon
[email protected]

Related Journal Article

https://healthsciences.ku.dk/newsfaculty-news/2019/04/chloride-channel-in-muscle-cells-provides-new-insights-for-muscle-diseases/
http://dx.doi.org/10.1371/journal.pbio.3000218

Tags: Cell BiologyDisabled PersonsMedicine/HealthMusculatureOrthopedic MedicinePharmaceutical ChemistryPharmaceutical Science
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Ultrafast Polaron Formation in NaTaO3 Reveals Instant Stabilization of Positive Charges in Key Solar Fuel Catalyst

September 30, 2025
blank

New Supramolecular Elastomer with Boron-Based Dynamic Bonds Delivers Superior Mechanical Strength and Chemical Recovery

September 30, 2025

New Study Uncovers Why Modern Proteins Were Selected by Nature

September 29, 2025

Global Call to Advance Robust and Reproducible Polyphenol Research to Launch Next October in Malta at Polyphenols Applications World Congress and Iprona

September 29, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    59 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultra-Linear Ga2O3 Synapses Enable Neuromorphic Vision

Study Finds Retraining After Endurance Exercise Break Boosts Muscle Gains

Transforming Healthcare: The TRIL Nurse Advocacy Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.