• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Chiton mollusk provides model for new armor design

Bioengineer by Bioengineer
December 10, 2019
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Virginia Tech


The motivations for using biology as inspiration to engineering vary based on the project, but for Ling Li, assistant professor of mechanical engineering in the College of Engineering, the combination of flexibility and protection seen in the chiton mollusk was all the motivation necessary.

“The system we’ve developed is based on the chiton, which has a unique biological armor system,” Li said. “Most mollusks have a single rigid shell, such as the abalone, or two shells, such as clams.

But the chiton has eight mineralized plates covering the top of the creature and around its base it has a girdle of very small scales assembled like fish scales, that provide flexibility as well as protection.”

Li’s work, which was featured in the journal Nature Communications Dec. 10, is the result of a collaboration with researchers from various institutions, including the Massachusetts Institute of Technology, the Dana-Farber Cancer Institute at the Harvard Medical School, California State University, Fullerton, the Max Planck Institute of Colloids and Interfaces, Germany, and the Wyss Institute for Biologically Inspired Engineering at Harvard University.

Because the mechanical design of the chiton’s girdle scales had not been studied in-depth before, the team of researchers needed to start with basic material and mechanical analysis with the mollusk before using that information as the bio-inspiration for the engineering research.

“We studied this biological material in a very detailed way. We quantified its internal microstructure, chemical composition, nano-mechanical properties, and three-dimensional geometry. We studied the geometrical variations of the scales across multiple chiton species, and we also investigated how the scales assemble together through 3D tomography analysis,” Li said.

The team then developed a parametric 3D modeling methodology to mimic the geometry of individual scales. They assembled individual scale units on either flat or curved substrates, where the scales’ sizes, orientations, and geometries can also be varied, and used 3D printing to fabricate the bio-inspired scale armor models.

“We produced the chiton scale-inspired scale assembly directly with 3D multi-material printing, which consists of very rigid scales on top of a flexible substrate,” Li explained. With these physical prototypes of controlled specimen geometries and sizes, the team conducted direct mechanical testing on them with controlled loading conditions. This allowed the researchers to understand the mechanisms behind the dual protection-flexibility performance of the biological armor system.

The way the scale armor works is that when in contact with a force, the scales converge inward upon one another to form a solid barrier. When not under force, they can “move” on top of one another to provide varying amounts of flexibility dependent upon their shape and placement.

“The strength comes from how the scales are organized, from their geometry,” Li said. “Reza’s [Mirzaeifar, assistant professor of mechanical engineering] team has done an amazing job by using computational modeling to further reveal how the scale armor becomes interlocked and rigid when the external load reaches a critical value.”

The design of place-specific armor takes into account the size of scales used. Smaller scales, such as those around the girdle of the chiton, are more useful for regions requiring maximum flexibility, while larger scales are used for areas requiring more protection. “Working with Reza, our next step is to expand the space so we can design tailored armor for different body locations.

The flexibility vs. protection needs of the chest, for example, will be different than for the elbow or knee, so we would need to design the scale assembly accordingly in terms of scale geometry, size, orientation, etc.”

The work being featured began with Department of Defense funding when Li was a graduate research assistant at the Massachusetts Institute of Technology. Since he arrived at Virginia Tech in 2017, the work has continued without sponsorship as part of his start-up funding.

“We started with a pretty pure motivation – looking for multifunctional biological materials,” Li said. “We wanted to integrate flexibility and protection and that’s very hard to achieve with synthetic systems. We will continue with our research to explore the design space beyond the original biological model system and conduct testing under different load conditions.”

Li admits the process, which has taken multiple years, is long, but the work is unique in how they’ve approached it from the start as a two-step process in conducting the fundamental biological materials research followed by the bio-inspired research.

“Having that level of familiarity with the subject has been very useful to the design and modeling of the armor,” Li said. “I think this type of bio-inspired armor will represent a significant improvement to what is currently available.”

###

Media Contact
Lindsey Haugh
[email protected]
540-231-2476

Original Source

https://vtnews.vt.edu/articles/2019/12/chiton-mollusk-provides-model-for-new-armor-design.html

Tags: BiologyBiotechnologyMechanical EngineeringResearch/DevelopmentTechnology/Engineering/Computer ScienceWeaponry
Share12Tweet8Share2ShareShareShare2

Related Posts

Weight-Adjusted Waist Index Predicts Breast Cancer

Weight-Adjusted Waist Index Predicts Breast Cancer

August 3, 2025
Institutional Factors Impacting Cervical Cancer Guideline Compliance

Institutional Factors Impacting Cervical Cancer Guideline Compliance

August 3, 2025

Bright Hybrid Excitons Boost Scalable X-ray Scintillators

August 3, 2025

Tau PET Positivity Varies by Age, Genetics, and Sex

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    49 shares
    Share 20 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Weight-Adjusted Waist Index Predicts Breast Cancer

Institutional Factors Impacting Cervical Cancer Guideline Compliance

Bright Hybrid Excitons Boost Scalable X-ray Scintillators

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.