• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chinese fossil shows modern bird skull evolved from a mixture of dinosaur and bird features

Bioengineer by Bioengineer
December 7, 2022
in Biology
Reading Time: 4 mins read
0
Digital reconstruction of the skull of the 120-million-year-old bird Yuanchuavis kompsosoura from northeastern China
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from the Institute of Vertebrate Paleontology and Paleoanthropology of the Chinese Academy of Sciences (IVPP) in Beijing and the Field Museum of Natural History in Chicago have revealed that birds retained key dinosaurian traits far into their evolution many millions of years after the split between dinosaurs and birds.

Digital reconstruction of the skull of the 120-million-year-old bird Yuanchuavis kompsosoura from northeastern China

Credit: WANG Min

Scientists from the Institute of Vertebrate Paleontology and Paleoanthropology of the Chinese Academy of Sciences (IVPP) in Beijing and the Field Museum of Natural History in Chicago have revealed that birds retained key dinosaurian traits far into their evolution many millions of years after the split between dinosaurs and birds.

This discovery is based on detailed analysis and three-dimensional reconstruction of the flattened fossilized skull of a 120-million-year-old bird fossil called Yuanchuavis kompsosoura from Early Cretaceous deposits in Liaoning Province, northeastern China. Importantly, this fossil also provides clues about the origin of cranial kinesis, a fundamental feature of modern bird skulls.

The study was published in eLife on Dec. 5.

Most living birds have what is termed a kinetic skull. This means that upper beak movement is independent of the braincase. This mobility is accomplished by two chains of skull bones aligned from the back of the skull to the front, with one chain along the cheek and the other along the palate (roof of the mouth). These chains of interconnected bones help to transfer forces from the back of the skull to the beak, allowing for its movement.

“We still don’t know which chain of bones was completed and freed first in bird evolution, or even if it was all completed together,” said Prof. WANG Min from IVPP,  lead and corresponding author of the study. “What we see in dinosaurs and the earliest birds like the enantiornithine Yuanchuavis is that these chains are missing connections or are locked in place because they connected to more bones that would stop most movements.”

“This fossil actually helps to narrow the time when, and where on the bird family tree, components of that moveable beak or kinesis evolved. We can show that it definitely was not present any earlier in bird evolution,” said Prof. Thomas Stidham  from IVPP, coauthor of the study.

Yuanchuavis is a member of a group of extinct birds called enantiornithines or “opposite birds”—so named because of key differences in their skeleton from living birds. The enantiornithines became extinct at the end of the Cretaceous during the global mass extinction marking the end of the Age of Dinosaurs.

By using high-resolution CT-scanning, the research team was able to digitally identify, isolate, and assemble all skull bones into a detailed three-dimensional reconstruction. This work revealed many anatomical details not known for early birds. Yuanchuavis shows a mosaic of dinosaurian and bird traits such as a feathered bird body with wings, a toothed mouth, and an immovable dinosaurian palate and snout.

Among the primitive dinosaurian features of Yuanchuavis is the presence of bar-forming contacts among the bones of the temporal region of the skull behind the eye that are found in dinosaurs, crocodiles, lizards, and snakes (known as the diapsid condition). These interconnections essentially “lock up” one of the chains of bones in Yuanchuavis that is otherwise free in living birds, a requirement for kinesis.

The researchers’ detailed study of the shape of the pterygoid, a palate bone, shows that it had no direct contact with another bone called the quadrate, which is also needed to complete the palatal chain of bones in kinesis. That absence of contact is seen in most dinosaurs, including Triceratops and Tyrannosaurus, but the bones connect with one another in living birds.

In addition, the research team was able to confirm that the pterygoid of enantiornithines retained a unique shape. It had a two-pronged projection behind the eye like Velociraptor and other close dinosaurian relatives of birds.

Although these features ruled out any kinesis in the skull of early birds, the paleontological team was able to uncover a secret hidden in the fossil skull regarding the origin of kinesis. Detailed analysis and comparison of the palatine, another bone in the palate of Yuanchuavis, shows that the palatine lacks a key contact with the jugal bone, a part of the cheekbone. Dinosaurs and the oldest bird Archaeopteryx have that contact, which helps stabilize the palate bones and restricts movement. In contrast, the palatine of living birds, like Yuanchuavis, does not have that contact, thus facilitating back and forth sliding during bird skull kinesis.

According to Prof. WANG, the change in palatine bone shape from having contact with four to just three other skull bones in enantiornithines may be where skull kinesis began.

“New features evolve from old ones, and kinesis must have evolved in birds from an ancestor lacking it,” said Prof. WANG.

Prof. Stidham observed that most people would expect early birds to have bird skulls that matched their feathered wings and bodies. “However, these early birds hadn’t completely moved beyond their dinosaurian ancestry, and the evolutionary path from a small feathered dinosaur to a living bird was not a straight line,” he said, noting that bird evolution had its “detours and dead-ends.”



Journal

eLife

DOI

10.7554/eLife.81337

Article Title

Insight into the evolutionary assemblage of cranial kinesis from a Cretaceous bird

Article Publication Date

5-Dec-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

GhMYB5: Key Regulator of Brown Cotton Pigmentation

October 7, 2025
blank

Beneficial Gut Bacteria Enhances Placental Health for Improved Pregnancy Outcomes

October 7, 2025

Yeast Proteins Unlock the Mysteries of Drought Resistance

October 6, 2025

Hub1 Overexpression: Revolutionizing Transcription and Splicing in Yeast

October 6, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    74 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Thymbra spicata’s Bioactive Compounds and Actions

GhMYB5: Key Regulator of Brown Cotton Pigmentation

Oral Health Linked to Disability and Mortality Risks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.