• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, June 30, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

China’s lunar lander finds evidence of native water on moon

Bioengineer by Bioengineer
June 14, 2022
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Samples from the Moon’s Oceanus Procellarum, an ancient mare basalt whose name translates to “Ocean of Storms,” may be able to calm at least one scientific squall: the source of lunar water.

Schematic diagram of Chang’E-5 in-situ spectral and laboratory sample analysis

Credit: CNSA/GRAS

Samples from the Moon’s Oceanus Procellarum, an ancient mare basalt whose name translates to “Ocean of Storms,” may be able to calm at least one scientific squall: the source of lunar water.

China’s lunar lander Chang’E-5 delivered the first real-time, on-site definitive confirmation of water signal in the basalt’s rocks and soil via on-board spectral analysis in 2020. The finding was validated through laboratory analysis of samples the lander returned in 2021. Now, the Chang’E-5 team has determined where the water came from.

The researchers published their results on June 14 in Nature Communications.

“For the first time in the world, the results of laboratory analysis of lunar return samples and spectral data from in-situ lunar surface surveys were used jointly to examine the presence, form and amount of ‘water’ in lunar samples,” said co-corresponding author LI Chunlai from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC). “The results accurately answer the question of the distribution characteristics and source of water in the Chang’E-5 landing zone and provide a ground truth for the interpretation and estimation of water signals in remote sensing survey data.”

Chang’E-5 did not observe lunar rivers or springs; rather the lander identified, on average, 30 hydroxyl parts per million in rocks and soil on the Moon’s surface. The molecules, made of one oxygen and one hydrogen atom, are the main ingredient of water, as well as the most common result of water molecules chemically reacting with other matter. Despite representing what LI called the “weak end of lunar hydration features,” hydroxyl is to water what smoke is to fire: evidence.

The samples were collected during the hottest part of the Moon’s day, at temperatures nearing 200°F, when the surface would be at its driest. The timing also coincides with low solar winds, which can contribute to hydration at high enough power.

Even with such dehydrated conditions, the hydrations signals still appeared – so, the researchers asked, where did they come from?

First detected by the lander’s on-board lunar mineralogical spectrometer in 11 rock and soil samples and further confirmed by five additional multi-part laboratory analyses on eight of the samples, the hydroxyl was found to originate from two different sources. A small portion appeared in glassy material made by solar winds interfering with the lunar surface, just as it did in an Apollo 11 sample collected in 1971 and tested in the early 2000s. But the Chang’E-5 sample only contained about a third the amount of solar wind-generated, hydroxyl-containing glass as the Apollo sample.

This suggests that the solar wind still contributed, although weakly, to the hydroxyl contents observed in the Chang’E-5 landing site. The bulk of the hydroxyl in the Chang’E-5 samples was contained in apatite, a crystalline, phosphate-rich mineral naturally found to be on the Moon, as well as Earth.

“This excess hydroxyl is indigenous, demonstrating the presence of lunar-originated internal water in the Chang’E-5 lunar samples, and that water played an important role in the formation and crystallization of the late lunar basaltic magma,” LI said, referring to the composition of Chang’E-5 landing site in the mare basalt of Oceanus Procellarum. “By investigating lunar water and its source, we are learning more about the formation and evolution of not just the Moon itself, but also the solar system. In addition, lunar water is expected to provide support for future human lunar in-situ resources.”

The researchers are planning subsequent lunar explorations with Chang’E-5’s successors, Chang’E-6 and Chang’E-7. According to LI, they will continue researching lunar water via remote sensing, on-site detection and laboratory analysis to better understand the source, distribution and temporal variation of lunar water, including polar ice.



Journal

Nature Communications

DOI

10.1038/s41467-022-30807-5

Article Title

Evidence of water on the lunar surface from Chang’E-5 in-situ spectra and returned samples

Article Publication Date

14-Jun-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Sample of cards used in the experiment

Clashes of inference and perspective explain why children sometimes lose the plot in conversation

June 30, 2022
Group Leader in Chemical Proteomics, Dr. Guillaume Médard, and his research group in the lab.

Shining some light on the obscure proteome

June 29, 2022

Romantic partners can influence each other’s beliefs and behaviors on climate change, new Yale study finds

June 29, 2022

An engaging leadership style may boost employee engagement

June 29, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsZoology/Veterinary ScienceVirologyVirusVaccineViolence/CriminalsWeaponryUrogenital SystemUniversity of WashingtonUrbanizationVehiclesVaccines

Recent Posts

  • The art of getting DNA out of decades-old pickled snakes
  • Clashes of inference and perspective explain why children sometimes lose the plot in conversation
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers
  • New research: Up to 540,000 lives could be saved worldwide by targeting speed and other main areas
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....