• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Chemists ‘print’ sensors for nano-objects

Bioengineer by Bioengineer
March 4, 2019
in Health
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Young scientists from ITMO University proposed a new type of optical nano-sensors. Their operating principle is based on the interaction of light in thin films: a similar effect can be observed in soap bubbles. Such sensors can be quickly manufactured using an inkjet printer and special ink made of titanium dioxide. In the future, the sensors can be used for rapid biomedical analysis. The results are published in Nanoscale.

Design of sensitive and inexpensive sensors for biomedical research is one of the most important tasks in modern science. To solve it, ITMO University researchers work on changing the operating principle of a conventional printer. Using inkjet printing, scientists create sophisticated systems for detecting nano-objects.

The synthesis starts after a special ink containing titanium dioxide is prepared. Using an inkjet printer, it is applied to a silicon substrate in a form of a film 200-400 nanometers thick, which is hundreds of times thinner than a human hair. Due to this interference, the transparent film appears to be colored, and its color depends on its thickness. Once a nanoscale object, be it a nanoparticle or a bacteriophage, is attached to the film surface, the thickness changes and so does the color. Using a specially designed scale for the film color assessment, scientists can figure out how many nano-objects have settled on it and what size they are.

The developed sensor prototype is capable of conducting both qualitative and quantitative analysis, although it is not yet selective. Scientists plan to immobilize antibodies on the film surface to detect individual proteins in biological samples.

“We did a lot of preparation: designed the concept and studied a lot of literature. Since this method is based on a complex physical phenomenon, we not only worked as chemists, but also attempted to take into account the optical, technological and biological aspects. This way, we managed to solve a number of technical issues during the experiment: we selected the parameters of the film and the substrate and also adapted the previously developed ink. Our further work is aimed at adapting the developed system for the biomedical application of such sensors,” comments Anna Frosinyuk, the first author of the study and a student at ITMO University’s SCAMT Laboratory.

###

Article:

Optical Interference-Based Sensors for Nano-Scale Objects by

Anna Frosinuk et al.

Nanoscale. 22 Feb 2019

https://pubs.rsc.org/en/content/articlelanding/2019/nr/c9nr00616h#!divAbstract

Media Contact
Dmitry Malkov
[email protected]
http://dx.doi.org/10.1039/C9NR00616H

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesMaterialsMolecular PhysicsNanotechnology/MicromachinesPharmaceutical Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Needle-Free Vaccine Delivery Achieved in Mice Through Skin Stretching Technique

September 17, 2025

High-Density Soft Biofibers Enable Advanced Sensing

September 17, 2025

Revolutionary Microscope Snaps High-Resolution, Wide-Angle Images of Curved Samples in a Single Shot

September 17, 2025

New PfDHFR-TS Inhibitors Discovered from Natural Compounds

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reindeer Grazing Helps Reduce Forest Carbon Emissions Amid Winter Climate Change

Needle-Free Vaccine Delivery Achieved in Mice Through Skin Stretching Technique

Magnetic Fields Enhance Monascus Pigment Production and Suppress Citrinin by Modulating Iron Metabolism

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.