• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Chemists create organic molecules in a rainbow of colors

Bioengineer by Bioengineer
December 5, 2023
in Chemistry
Reading Time: 4 mins read
0
Acenes consist of benzene molecules
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CAMBRIDGE, MA — Chains of fused carbon-containing rings have unique optoelectronic properties that make them useful as semiconductors. These chains, known as acenes, can also be tuned to emit different colors of light, which makes them good candidates for use in organic light-emitting diodes.

Acenes consist of benzene molecules

Credit: MIT

CAMBRIDGE, MA — Chains of fused carbon-containing rings have unique optoelectronic properties that make them useful as semiconductors. These chains, known as acenes, can also be tuned to emit different colors of light, which makes them good candidates for use in organic light-emitting diodes.

The color of light emitted by an acene is determined by its length, but as the molecules become longer, they also become less stable, which has hindered their widespread use in light-emitting applications.

MIT chemists have now come up with a way to make these molecules more stable, allowing them to synthesize acenes of varying lengths. Using their new approach, they were able to build molecules that emit red, orange, yellow, green, or blue light, which could make acenes easier to deploy in a variety of applications.

“This class of molecules, despite their utility, have challenges in terms of their reactivity profile,” says Robert Gilliard, the Novartis Associate Professor of Chemistry at MIT and the senior author of the new study. “What we tried to address in this study first was the stability problem, and second, we wanted to make compounds where you could have a tunable range of light emission.”

MIT research scientist Chun-Lin Deng is the lead author of the paper, which appears today in Nature Chemistry.

 

Colorful molecules

Acenes consist of benzene molecules — rings made of carbon and hydrogen — fused together in a linear fashion. Because they are rich in sharable electrons and can efficiently transport an electric charge, they have been used as semiconductors and field-effect transistors (transistors that use an electric field to control the flow of current in a semiconductor).

Recent work has shown that acenes in which some of the carbon atoms are replaced, or “doped,” with boron and nitrogen have even more useful electronic properties. However, like traditional acenes, these molecules are unstable when exposed to air or light. Often, acenes have to be synthesized within a sealed container called a glovebox to protect them from air exposure, which can lead them to break down. The longer the acenes are, the more susceptible they are to unwanted reactions initiated by oxygen, water, or light.

To try to make acenes more stable, Gilliard decided to use a ligand that his lab has previously worked with, known as carbodicarbenes. In a study published last year, they used this ligand to stabilize borafluorenium ions, organic compounds that can emit different colors of light in response to temperature changes.

For this study, Gilliard and his co-authors developed a new synthesis that allowed them to add carbodicarbenes to acenes that are also doped with boron and nitrogen. With the addition of the new ligand, the acenes became positively charged, which improved their stability and also gave them unique electronic properties.

Using this approach, the researchers created acenes that produce different colors, depending on their length and the types of chemical groups attached to the carbodicarbene. Until now, most of the boron, nitrogen-doped acenes that had been synthesized could emit only blue light.

“Red emission is very important for wide-ranging applications, including biological applications like imaging,” Gilliard says. “A lot of human tissue emits blue light, so it’s difficult to use blue-fluorescent probes for imaging, which is one of the many reasons why people are looking for red emitters.”

 

Better stability

Another important feature of these acenes is that they remain stable in both air and water. Boron-containing charged molecules with a low coordination number (meaning the central boron atom has few neighbors) are often highly unstable in water, so the acenes’ stability in water is notable and could make it feasible to use them for imaging and other medical applications.

“One of the reasons why we’re excited about the class of compounds that we’re reporting in this paper is that they can be suspended in water. That opens up a wide range of possibilities,” Gilliard says.

The researchers now plan to try incorporating different types of carbodicarbenes to see if they can create additional acenes with even better stability and quantum efficiency (a measure of how much light is emitted from the material).

“We think it will be possible to make a lot of different derivatives that we haven’t even synthesized yet,” Gilliard says. “There are a lot of optoelectronic properties that can be dialed in that we have yet to explore, and we’re excited about that as well.”

Gilliard also plans to work with Marc Baldo, an MIT professor of electrical engineering, to try incorporating the new acenes into a type of solar cell known as a single-fission-based solar cell. This type of solar cell can produce two electrons from one photon, making the cell much more efficient.

These types of compounds could also be developed for use as light-emitting diodes for television and computer screens, Gilliard says. Organic light-emitting diodes are lighter and more flexible than traditional LEDs, produce brighter images, and consume less power.

“We’re still in the very early stages of developing the specific applications, whether it’s organic semiconductors, light-emitting devices, or singlet-fission-based solar cells, but due to their stability, the device fabrication should be much smoother than typical for these kinds of compounds,” Gilliard says.

###

The research was funded by the Arnold and Mabel Beckman Foundation and the National Science Foundation Major Research Instrumentation Program.



DOI

10.1038/s41557-023-01381-0

Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hope for Sahara Killifish’s Rediscovery in Algeria!

Dopamine D2 Receptors and Heart Cell Death Unveiled

Evaluating Rapid Start HIV Treatment Benefits in U.S.

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.