• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, March 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Chemical trickery corrals ‘hyperactive’ metal-oxide cluster

Bioengineer by Bioengineer
December 8, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CORVALLIS, Ore. – After decades of eluding researchers because of chemical instability, key metal-oxide clusters have been isolated in water, a significant advance for growing the clusters with the impeccable control over atoms that's required to manufacture small features in electronic circuits.

Oregon State University chemists created the aqueous cluster formation process. It yielded a polyoxocation of zinc, aluminum and chromium that is not protected by the organic ligand shell that is usually required to capture such molecules from water.

"Our discovery is exciting in that it provides both new fundamental understanding and new materials, and useful applications are always built on a foundation of fundamental understanding," said May Nyman, a professor of chemistry at Oregon State.

Metal oxides – compounds produced when metals combine with oxygen – serve a variety of important purposes. For example, titanium dioxide is a catalyst that degrades pollutants, and aluminum oxides and iron oxides are coagulants used as the first step in purifying drinking water.

"Metal oxides influence processes everywhere," Nyman said. "They control the spread of contaminants in the environment. They are the touchscreen of your cellphone. The metal-oxide cluster forms are in your body storing iron and in plants controlling photosynthesis. Most of these processes are in water. Yet scientists still know so little about how these metal oxides operate in nature, or how we can make them with the absolute control needed for high-performance materials in energy applications."

Results of the research by the OSU College of Science's Center for Sustainable Materials Chemistry were recently published in the journal Chem.

"We devised some synthetic processes so we can trick the clusters into forming," Nyman said. "The main thing that we do is control the chemistry so the clusters grow not in the solution where they are highly reactive, but only at the surface, where the water evaporates and they instantly crystallize into a solid phase. Once in the solid phase, there's no danger of reacting and precipitating metal oxide or hydroxide in an uncontrolled way."

The clusters created in the research are spherical, contain about 100 atoms, and measure 1 nanometer across.

"Once we have synthesized these, we can prepare a solution of them, and they're all exactly the same size and contain the same number of atoms," Nyman said. "This gives us control over making very small features.

"The size of the feature is controlled by the size of the cluster. All metals on the periodic table act differently, and only a few have the right chemistry that behaves well enough to yield these clusters. For the rest of them, we need to innovate new chemistries to discover their cluster forms. The transition metals are particularly hard to control, yet they are earth-abundant and some of the most important metals in energy and environmental technologies."

Metal-oxo clusters are usually isolated from water with ligands – molecules that protect the cluster surface and prevent precipitation of metal hydroxides.

In this study, an OSU team that included graduate students Lauren Fullmer, Sara Goberna-Ferron and Lev Zakharov overcame the need for ligands with a three-pronged strategy: pH-driven hydrolysis by oxidative dissolution of zinc; metal nitrate concentrations 10 times higher than conventional syntheses; and azeotropic evaporation for driving simultaneous cluster assembly and crystallization at the surface of the solution.

Meanwhile, the team's computational collaborators in Catalonia provided a deeper understanding of the most stable arrangement of metal and oxygen atoms in the cluster.

"Contrary to common cluster growth, the fully assembled cluster is never detected in the reaction solution," Nyman said. "Because the reactive clusters do not persist in solution, uncontrolled precipitation of metal hydroxide is avoided. In this sense, we have discovered a new way metal oxides can grow."

###

Media Contact

May Nyman
[email protected]
541-737-1116
@oregonstatenews

http://www.orst.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Ochsner Gallup

Ochsner Health named 2023 Gallup Exceptional Workplace Award Winner

March 29, 2023
New Chip Design to Provide Greatest Precious in Memory to Date

New chip design to provide greatest precision in memory to date

March 29, 2023

We are not yet approaching any maximum human lifespan, according to an examination of human mortality over time and across 19 countries

March 29, 2023

Can AI predict how you’ll vote in the next election?

March 29, 2023
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    67 shares
    Share 27 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ochsner Health named 2023 Gallup Exceptional Workplace Award Winner

New chip design to provide greatest precision in memory to date

We are not yet approaching any maximum human lifespan, according to an examination of human mortality over time and across 19 countries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In