• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chemical synthesis breakthrough holds promise for future antibiotics

Bioengineer by Bioengineer
December 20, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Colorado Boulder chemistry researchers have developed a novel way to synthesize and optimize a naturally-occurring antibiotic compound that could one day be used to fight lethal drug-resistant infections such as Staphylococcus aureus, commonly known as MRSA.

Antibiotic-resistant infections afflict over 2 million people annually and result in over 23,000 deaths in the U.S. each year, according to the Centers for Disease Control and Prevention (CDC). A 2018 study by the CDC’s European counterpart found that drug-resistant superbugs were responsible for 33,000 deaths across Europe in 2015.

Researchers have previously identified thiopeptides, a naturally-occurring antibiotic compound, as a promising avenue of study. Thiopeptides have shown some effectiveness against MRSA and certain other bacterial species in limited trials, but their structural diversity makes it difficult to synthesize the molecules at a scale large enough for therapeutic use.

To make better use of thiopeptides, CU Boulder researchers went back to basics and re-examined previous assumptions about the foundational chemical properties of these molecules.

“We re-evaluated the structural commonalities of these thiopeptides in light of current superbugs, because no one had looked at them and analyzed them in modern context,” said Maciej Walczak, lead author of the new research and an assistant professor in CU Boulder’s Department of Chemistry.

The researchers invented a new catalyst to drive reactions that facilitate the synthesis of the thiopeptides and form the essential scaffolding needed to curtail bacterial growth. Their efforts resulted in two new broadly representative antibiotics: micrococcin P1 and thiocillin I. The compounds are efficient, scaleable and produce no harmful byproducts.

“The results exceeded our expectations,” Walczak said. “It’s a very clean reaction. The only waste produced is water and the fact that this is a very green method could be important going forward as the technology scales up.”

The study, which was funded by the National Science Foundation and co-authored by CU Boulder postdoctoral researcher Siddhartha Akasapu and graduate students Aaron Hinds and Wyatt Powell, was recently published in the journal Chemical Science.

The new chemical synthesis methodology is just a starting point, Walczak said. He and his colleagues plan to use their findings as a platform for selecting and rationing parts of the thiopeptide molecules in order to optimize their properties and apply them broadly to other bacterial classes.

The antibiotic compounds will need to complete clinical trials before they can be approved for human use, a process that can take many years. Still, the need for scientific innovation in the field of antibiotic resistant superbugs is greater than ever, Walczak said.

“Multi-drug resistance is an important global health problem and it’s going to become even more so in the years to come,” he said.

###

Media Contact
Trent Knoss
[email protected]
303-735-0528

Related Journal Article

https://www.colorado.edu/today/node/31757
http://dx.doi.org/10.1039/C8SC04885A

Tags: BiochemistryChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Nanomaterials Influence on Cellulase from Aspergillus and Trichoderma

September 17, 2025
Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

September 17, 2025

Optimizing Selenium Intake to Improve Sperm Quality in Broilers

September 17, 2025

Sodium Selenite Boosts Fermentation in Alfalfa Silage

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanomaterials Influence on Cellulase from Aspergillus and Trichoderma

Gastroesophageal Reflux Differences in Preterm Infants Fed Milk

Innovative Personalized Risk Score Promises Enhanced Ovarian Cancer Detection

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.