• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 4, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biochemistry

Chemical element bromine is essential to life in humans and other animals

Bioengineer by Bioengineer
June 6, 2014
in Biochemistry
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a paper published Thursday, June 5, in the journal Cell, Vanderbilt University researchers establish for the first time that bromine, among the 92 naturally occurring chemical elements in the universe, is the 28thelement essential for tissue development in all animals, from primitive sea creatures to humans.

Chemical element bromine is essential to life in humans and other animals

Photo Credit: Image courtesy of Vanderbilt University Medical Center

“Without bromine, there are no animals. That’s the discovery,” said Billy Hudson, Ph.D., the paper’s senior author and Elliott V. Newman Professor of Medicine.

The researchers, led by co-first authors Scott McCall, Christopher Cummings, Ph.D., and Gautam (Jay) Bhave, M.D., Ph.D., showed that fruit flies died when bromine was removed from their diet but survived when bromine was restored.

This finding has important implications for human disease. “Multiple patient groups … have been shown to be bromine deficient,” said McCall, an M.D./Ph.D. student. Bromine supplementation may improve the health of patients on dialysis or total parenteral nutrition (TPN), for example.

The report is the latest in a series of landmark papers by the Vanderbilt group that have helped define how collagen IV scaffolds undergird the basement membrane of all tissues, including the kidney’s filtering units.

Hudson said the foundation for the discovery about bromine goes back 30 years when he was at the University of Kansas Medical School.

Curiosity about two rare kidney diseases led, in the mid-1980s, to the discovery of two previously unknown proteins that twist around each other to form the triple-helical collagen IV molecule, like cables supporting a bridge. Disease results when these cables are defective or damaged.

Hudson moved to Vanderbilt in 2002.

In 2009, colleagues led by Roberto Vanacore, Ph.D., assistant professor of Medicine, reported in Science magazine the discovery of a novel sulfilimine bond between a sulfur atom and a nitrogen atom that acts like a “fastener” to connect the collagen IV molecules forming scaffolds for cells.

A defective bond may trigger the rare auto-immune disease Goodpasture’s syndrome. The disorder is named for the late Vanderbilt pathologist and former medical school dean Ernest Goodpasture, M.D., who was best known for his contribution to the development of vaccines.

That discovery led to simple question: how is the bond formed?

In 2012, Bhave, assistant professor of Medicine, Cummings, now a postdoctoral fellow, and Vanacore led the effort that found the answer — the enzyme peroxidasin.

Conserved across the animal kingdom, peroxidasin also may play a role in disease. An overactive enzyme may lead to excessive deposition of collagen IV and thickening of the basement membrane, which can impair kidney function, they reported in the journal Nature Chemical Biology.

In the current study, to which Vanacore and Andrea Page-McCaw, Ph.D., associate professor of Cell and Developmental Biology, also contributed, the scientists demonstrated the unique and essential role for ionic bromide as a “co-factor,” enabling peroxidasin to form the sulfilimine bond.

The chemical element bromine is thus “essential for animal development and tissue architecture,” they report.

Story Source:

The above story is based on materials provided by Vanderbilt University Medical Center.

Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Within a hair’s breadth–forensic identification of single dyed hair strand now possible

December 9, 2020
blank

Protein aggregates save cells during aging

May 8, 2015

Revolutionary method of making RNAs

May 4, 2015

DNA ‘cage’ could improve nanopore technology

February 11, 2015

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    667 shares
    Share 267 Tweet 167
  • People living with HIV face premature heart disease and barriers to care

    84 shares
    Share 34 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

GeneticsEcology/EnvironmentInfectious/Emerging DiseasesPublic HealthTechnology/Engineering/Computer ScienceBiologyMedicine/HealthcancerCell BiologyMaterialsClimate ChangeChemistry/Physics/Materials Sciences

Recent Posts

  • March science snapshots
  • Do known drugs help against SARS-coronavirus-2?
  • Porous crystal guides reaction to transform CO2
  • NCI grant enables exploration of cancer-fighting compound isolated from Moroccan fungus
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In