• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Char application restores soil carbon and productivity

Bioengineer by Bioengineer
August 27, 2020
in Biology
Reading Time: 1 min read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo courtesy of Michael Kaiser.

Intensively tilled soils have lost up to 50% of their original C with the attendant degradation in soil properties and productivity. Restoring the C lost with current conservation practices (i.e., no-till, cover crops) often takes decades. Applying high-C coal combustion residue from sugar beet (Beta vulgaris L.) processing factories, known as char, may rapidly restore soil C and productivity in degraded croplands.

In a recent Journal of Environmental Quality article, researchers in the Nebraska High Plains evaluated soil and crop response to char containing about 30% C applied at different rates ranging from 0 to 67.3 Mg ha-1 to two relatively low C soils (

Findings suggest that this industrial by-product can be a potential strategy to rapidly restore C in degraded agricultural soils, but additional long-term (> 2 years) research with char application exceeding 67.3 Mg ha-1 under different soils and climates is needed to fully understand how char impacts soil properties and crop yields.

###

Adapted from Blanco?Canqui, H, Kaiser, M, Hergert, GW, et al. Can char carbon enhance soil properties and crop yields in low-carbon soils J. Environ. Qual 2020; 1- 13.

Media Contact
Rachel Schutte
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/jeq2.20111

Tags: Agricultural Production/EconomicsAgricultureClimate ChangeEarth ScienceEcology/EnvironmentGeology/SoilPlant SciencesResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

No Heritability Found in Extra-Pair Mating Behavior

September 16, 2025
blank

How Placental Research Could Revolutionize Our Understanding of Autism and Human Brain Evolution

September 16, 2025

Pueraria lobata and Puerarin Boost Dopamine Activity

September 16, 2025

Breakthroughs in Dynamic Biomacromolecular Modifications and Chemical Interventions: Insights from a Leading Chinese Chemical Biology Consortium

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cleveland Clinic Study Finds Bariatric Surgery Offers Superior Long-Term Benefits Over GLP-1 Medications

Stem Cell Transplant Promotes Brain Cell Regeneration and Functional Recovery After Stroke in Mice

“‘Internal Alarm System’ Activates Immune Defense to Combat Cancer”

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.