• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Chaos theory produces map for predicting paths of particles emitted into the atmosphere

Bioengineer by Bioengineer
July 16, 2019
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Combining wind data with the fractal-like behavior that air particles take on in the atmosphere provides a way for determining how pollutants and volcanic ash will travel

IMAGE

Credit: Tímea Haszpra

WASHINGTON, D.C., July 16, 2019 — Floating air particles following disasters and other largescale geological events can have a lasting impact on life on Earth. Volcanic ash can be projected up to the stratosphere and halt air traffic by lingering in the atmosphere for months. Particles from industrial accidents have the potential to travel full hemispheres before falling to the ground. A new model drawing on chaos theory, and published in this week’s Chaos, from AIP Publishing, looks to help predict how particles move in such events with an eye toward potential applications for geoengineering to combat climate change.

Using available wind data, researcher Tímea Haszpra developed a model for following air particles as they travel around the globe. Using it, she has generated maps that can be used as atlases to predict how particles, such as volcanic ash or pollution, will be dispersed above the world.

“One of the most surprising parts of the research is the wide range of individual lifetimes,” she said. “Lifetimes ranged from about two to 150 days for typical volcanic ash particles. More than 10% of smaller particles survive in the atmosphere as much as one year, and more than 1% survive two years.”

Atmospheric particle motion exhibits fractal-like behavior, and when data is specially filtered, an object that governs chaotic particle motion and is called a chaotic saddle can be found. The paths of each simulated particle show properties that are transiently brought together by the changes in the flow of the atmosphere, akin to sitting on the saddle, before falling off the saddle and, consequently, falling to Earth.

In general, she found that particles coming from the area around the equator remain in the atmosphere for the longest time, and particles smaller than one micron could stay in the atmosphere for years before falling.

The average lifetime of a particle in the air is about one month, but they also found that particles in one area of a map could be in the air up to 10 times as long as particles nearby on the map. How these lifetimes were distributed around the globe varied depending on the season.

To illustrate the concepts in the paper, Haszpra has created an online game, called RePLaT-Chaos, that lets players learn the topic of atmospheric advection by creating and testing their own volcanic eruptions.

Haszpra believes her findings can inform future efforts that have been suggested to use sun-reflecting air particles to counteract climate change. She plans to expand on this work by incorporating historical meteorological data and climate models to better understand how the dispersion of particles might change when the climate changes.

###

The article, “Intricate features in the lifetime and deposition of atmospheric aerosol particles,” is authored by Tímea Haszpra. The article will appear in Chaos on July 16, 2019 (DOI: 10.1063/1.5110385). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5110385.

ABOUT THE JOURNAL

Chaos is devoted to increasing the understanding of nonlinear phenomena in all disciplines and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See http://chaos.aip.org.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/1.5110385

Tags: Algorithms/ModelsAtmospheric ScienceChemistry/Physics/Materials SciencesClimate ChangeEarth ScienceMathematics/StatisticsPollution/RemediationSystems/Chaos/Pattern Formation/ComplexityTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Cosmic Mystery: Unraveling the Enigmatic Black Hole Phenomenon

July 31, 2025
blank

New dual-mode optical imaging system provides a noninvasive breakthrough in skin cancer diagnosis

July 31, 2025

Innovative Technique Unveiled for Neutrino Detection

July 31, 2025

Engineered Enzyme Enables Precise Construction of Complex Molecules

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Respiratory Viruses Reactivate Dormant Breast Cancer

Urine vs Stool Gluten Peptides: Tracking Diet Compliance

Unraveling Genetic Risks: Time-Varying Causal Mediation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.