• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Chaos theory produces map for predicting paths of particles emitted into the atmosphere

Bioengineer by Bioengineer
July 16, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Combining wind data with the fractal-like behavior that air particles take on in the atmosphere provides a way for determining how pollutants and volcanic ash will travel

IMAGE

Credit: Tímea Haszpra

WASHINGTON, D.C., July 16, 2019 — Floating air particles following disasters and other largescale geological events can have a lasting impact on life on Earth. Volcanic ash can be projected up to the stratosphere and halt air traffic by lingering in the atmosphere for months. Particles from industrial accidents have the potential to travel full hemispheres before falling to the ground. A new model drawing on chaos theory, and published in this week’s Chaos, from AIP Publishing, looks to help predict how particles move in such events with an eye toward potential applications for geoengineering to combat climate change.

Using available wind data, researcher Tímea Haszpra developed a model for following air particles as they travel around the globe. Using it, she has generated maps that can be used as atlases to predict how particles, such as volcanic ash or pollution, will be dispersed above the world.

“One of the most surprising parts of the research is the wide range of individual lifetimes,” she said. “Lifetimes ranged from about two to 150 days for typical volcanic ash particles. More than 10% of smaller particles survive in the atmosphere as much as one year, and more than 1% survive two years.”

Atmospheric particle motion exhibits fractal-like behavior, and when data is specially filtered, an object that governs chaotic particle motion and is called a chaotic saddle can be found. The paths of each simulated particle show properties that are transiently brought together by the changes in the flow of the atmosphere, akin to sitting on the saddle, before falling off the saddle and, consequently, falling to Earth.

In general, she found that particles coming from the area around the equator remain in the atmosphere for the longest time, and particles smaller than one micron could stay in the atmosphere for years before falling.

The average lifetime of a particle in the air is about one month, but they also found that particles in one area of a map could be in the air up to 10 times as long as particles nearby on the map. How these lifetimes were distributed around the globe varied depending on the season.

To illustrate the concepts in the paper, Haszpra has created an online game, called RePLaT-Chaos, that lets players learn the topic of atmospheric advection by creating and testing their own volcanic eruptions.

Haszpra believes her findings can inform future efforts that have been suggested to use sun-reflecting air particles to counteract climate change. She plans to expand on this work by incorporating historical meteorological data and climate models to better understand how the dispersion of particles might change when the climate changes.

###

The article, “Intricate features in the lifetime and deposition of atmospheric aerosol particles,” is authored by Tímea Haszpra. The article will appear in Chaos on July 16, 2019 (DOI: 10.1063/1.5110385). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5110385.

ABOUT THE JOURNAL

Chaos is devoted to increasing the understanding of nonlinear phenomena in all disciplines and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See http://chaos.aip.org.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/1.5110385

Tags: Algorithms/ModelsAtmospheric ScienceChemistry/Physics/Materials SciencesClimate ChangeEarth ScienceMathematics/StatisticsPollution/RemediationSystems/Chaos/Pattern Formation/ComplexityTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Protective Coating for Spacecraft in Development by Engineers

October 20, 2025
blank

Scientists Uncover Life’s Building Blocks in Ice Surrounding a Forming Star in Nearby Galaxy

October 20, 2025

Copper-Catalyzed Asymmetric Cross-Coupling with Reactive Radicals

October 20, 2025

The Quantum Doorway Puzzle: Electrons Struggling to Find Their Exit

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1269 shares
    Share 507 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    302 shares
    Share 121 Tweet 76
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    124 shares
    Share 50 Tweet 31

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Increased Prevalence of Digestive Issues During Perimenopause and Menopause

Retraction: circfarsa miR-330-5p Bladder Cancer Link

Emotion Regulation’s Impact on Suicide Risk in Autistic Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.