• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Certainty in complex scientific research an unachievable goal

Bioengineer by Bioengineer
February 1, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

TORONTO, ON (Canada) – A University of Toronto study on uncertainty in scientific research could shed light on anomalies that arose in early attempts to discover the Higgs boson and even how polls failed to predict the outcome of Donald Trump winning the U.S. presidential election.

Published recently in the journal Royal Society Open Science, the study suggests that research in some of the more complex scientific disciplines, such as medicine or particle physics, often doesn't eliminate uncertainties to the extent we might expect.

"This is due to a tendency to under-estimate the chance of significant abnormalities in results." said study author David Bailey, a professor in U of T's Department of Physics.

Looking at 41,000 measurements of 3,200 quantities – from the mass of an electron to the carbon dating of a sample – Bailey found that anomalous observations happened up to 100,000 times more often than expected.

"The chance of large differences does not fall off exponentially as you'd expect in a normal bell curve," said Bailey.

A long tail of uncertainty

"The study shows that researchers in many fields do a good job of estimating the size of typical errors in their measurements, but usually underestimate the chance of large errors," said Bailey, noting that the larger-than-expected frequency of large differences may be an almost inevitable consequence of the complex nature of scientific research.

"As measurements become more and more accurate, the smallest things matter more and more," Bailey said.

"If two measurements agree, you're happy. If not, you see there's something you need to investigate," he said. "You track down the cause of the variation and report the cause or you say that you don't know the cause and this reduces the trust in your result."

But with finite time and financial resources, researchers often have to make a choice between having a large sample of data, such as tens of thousands of people in a survey, and having a large number of variables you want to understand.

"You start with a very large sample that just lumps everyone together. You then might have to ask if your result is the same for both men and women. Is it the same for different backgrounds, Canadians versus Americans, for example," says Bailey. "At that point, you have to ask if your results hold for the smaller data set. Your sample is getting smaller and more can go wrong."

Impossible not to be a little wrong?

Physics studies did not fare significantly better than the medical and other research observed. However, the highly quantifiable way in which values and uncertainties are reported, may make physics more useful in terms of the degree of reproduce-ability of results that researchers should reasonably expect.

"Scientists will still aim for the most accurate results, but their expectations of how well those aims are met may be tempered in light of this research," said Bailey.

He believes his study can help researchers better analyze their data, motivate more care with novel results, and encourage more realistic expectations by both scientists and the public about the accuracy of scientific research.

"These insights can be beneficial given the inherently complex nature of scientific research," says Bailey. "But the chance of avoiding being wrong in some way on some level is almost impossible."

###

Note to media: The complete study "Not Normal: the uncertainties of scientific measurements" can be found at http://rsos.royalsocietypublishing.org/content/4/1/160600.

MEDIA CONTACTS:

David Bailey
Department of Physics
University of Toronto
[email protected]

Sean Bettam
Communications Officer, Faculty of Arts & Science
University of Toronto
+1 416 946 7950
[email protected]

Media Contact

Sean Bettam
[email protected]
416-946-7950
@UofTNews

http://www.utoronto.ca

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Multi-Strain Probiotics Combat Diet-Induced Obesity in Mice

October 14, 2025

LAT1-NRF2 Axis Regulates Preeclampsia Biomarkers, Oxidative Stress

October 14, 2025

Magnetoelastic Sensor Reveals Fatigue Levels Accurately

October 14, 2025

Exploring Non-canonical Thioesterases in Peptide Biosynthesis

October 14, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1238 shares
    Share 494 Tweet 309
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multi-Strain Probiotics Combat Diet-Induced Obesity in Mice

LAT1-NRF2 Axis Regulates Preeclampsia Biomarkers, Oxidative Stress

Magnetoelastic Sensor Reveals Fatigue Levels Accurately

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.