• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cellular regeneration therapy restores damaged liver tissue faster than ever

Bioengineer by Bioengineer
April 26, 2022
in Biology
Reading Time: 4 mins read
0
Science image
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LA JOLLA—(April 26, 2022) Mammals can’t typically regenerate organs as efficiently as other vertebrates, such as fish and lizards. Now, Salk scientists have found a way to partially reset liver cells to more youthful states—allowing them to heal damaged tissue at a faster rate than previously observed. The results, published in Cell Reports on April 26, 2022, reveal that the use of reprogramming molecules can improve cell growth, leading to better liver tissue regeneration in mice.

Science image

Credit: Salk Institute

LA JOLLA—(April 26, 2022) Mammals can’t typically regenerate organs as efficiently as other vertebrates, such as fish and lizards. Now, Salk scientists have found a way to partially reset liver cells to more youthful states—allowing them to heal damaged tissue at a faster rate than previously observed. The results, published in Cell Reports on April 26, 2022, reveal that the use of reprogramming molecules can improve cell growth, leading to better liver tissue regeneration in mice.

 

“We are excited to make strides at repairing cells of damaged livers because, someday, approaches like this could be extended to replacing the whole organ itself,” says corresponding author Juan Carlos Izpisua Belmonte, a professor in Salk’s Gene Expression Laboratory and holder of the Roger Guillemin Chair. “Our findings could lead to the development of new therapies for infection, cancer and genetic liver diseases as well as metabolic diseases like nonalcoholic steatohepatitis (NASH).”

 

The authors previously showed how four cellular reprogramming molecules—Oct-3/4, Sox2, Klf4 and c-Myc, also called “Yamanaka factors”—can slow down the aging process as well as improve muscle tissue regeneration capacity in mice. In their latest study, the authors used Yamanaka factors to see if they could increase liver size and improve liver function while extending the health span of the mice. The process involves partially converting mature liver cells back to “younger” states, which promotes cell growth.

 

“Unlike most of our other organs, the liver is more effective at repairing damaged tissue,” says co-first author Mako Yamamoto, a staff researcher in the Izpisua Belmonte lab. “To find out if mammalian tissue regeneration could be enhanced, we tested the efficacy of Yamanaka factors in a mouse liver model.”

 

The issue many researchers in the field face is how to control the expression of factors needed for improving cell function and rejuvenation as some of these molecules can cause rampant cell growth, such as occurs in cancer. To circumvent this, Izpisua Belmonte’s team used a short-term Yamanaka factor protocol, where the mice had their treatment administered for only one day. The team then tracked the activity of the partially reprogrammed liver cells by taking periodic samples and closely monitoring how cells divided over several generations. Even after nine months––roughly a third of the animal’s life span–– none of the mice had tumors.

 

“Yamanaka factors are truly a double-edged sword,” says co-first author Tomoaki Hishida, a former postdoctoral fellow in the Izpisua Belmonte lab and current associate professor at Wakayama Medical University in Japan. “On the one hand, they have the potential to enhance liver regeneration in damaged tissue, but the downside is that they can cause tumors. We were excited to find that our short-term induction protocol has the good effects without the bad—improved regeneration and no cancer.”

 

The scientists made a second discovery while studying this reprogramming mechanism in a lab dish: A gene called Top2a is involved in liver cell reprogramming and is highly active one day after short-term Yamanaka factor treatment. Top2a encodes Topoisomerase 2a, an enzyme that helps break up and rejoin DNA strands. When the researchers blocked the gene, which lowered Topoisomerase 2a levels, they saw a 40-fold reduction in cellular reprogramming rates, leading to far fewer young cells. The exact role that Top2a plays in this process remains a future area of research.

 

“There is still much work to be done before we can fully understand the molecular basis underlying cellular rejuvenation programming approaches,” says Izpisua Belmonte. “This is a necessary requirement for developing effective and universal medical treatments and reversing the effects of human disease.”

 

Izpisua Belmonte is currently Institute Director of Altos Labs Inc., in addition to being a professor at the Salk Institute.

 

This work was supported by a Uehara Memorial Foundation research fellowship UCAM and Fundacion Dr. Pedro Guillen.

 

Other authors included Yuriko Hishida-Nozaki, Changwei Shao, Ling Huang, Chao Wang, Kensaku Shojima, Yuan Xue, Yuqing Hang, Maxim Shokhirev, Sebastian Memczak, Sanjeeb Kumar Sahu, Fumiyuki Hatanaka, Ruben Rabadan Ros, Matthew B. Maxwell, Jasmine Chavez, Yanjiao Shao, Hsin-Kai Liao, Paloma Martinez-Redondo, Isabel Guillen-Guillen, Reyna Hernandez-Benitez, Concepcion Rodriguez Esteban, Yang Yu, Diana C. Hargreaves, and Pradeep Reddy of Salk; Guang-Hui Liu and Jing Qu of the Chinese Academy of Sciences; Michael Holmes, Fei Yi and Raymond D. Hickey of Ambys Medicines; Pedro Guillen Garcia of Clínica CEMTRO; Estrella Nuñez Delicado of Universidad Católica San Antonio de Murcia; Antoni Castells and Josep Campistol of Hospital Clinic of Barcelona; and Akihiro Asai of Cincinnati Children’s Hospital Medical Center.

 

About the Salk Institute for Biological Studies:
Every cure has a starting point. The Salk Institute embodies Jonas Salk’s mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer’s, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

 



Journal

Cell Reports

DOI

10.1016/j.celrep.2022.110730

Article Title

In vivo partial cellular reprogramming enhances liver plasticity and regeneration

Article Publication Date

26-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.