• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Cells communicate by doing the ‘wave’

Bioengineer by Bioengineer
July 22, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Kyoto University reverse engineers cellular mechano-chemical feedback system

IMAGE

Credit: Kyoto University

Kyoto, Japan — Cells work around the clock to deliver, maintain, and control every aspect of life. And just as with humans, communication is a key to their success.

Every essential biological process requires some form of communication among cells, not only with their immediate neighbors but also to those significantly farther away. Current understanding is that this information exchange relies on the diffusion of signaling molecules or on cell-to-cell relays.

Publishing in the journal Developmental Cell, a research team at Kyoto University’s Graduate School of Medicine reports on a novel method of communication relying on ‘mechano-chemical’ signals to control cell movement. The research group focused on a fundamental pathway — MAPK/ERK, or ERK pathway — and were able to demonstrate how the movement of a single cell could trigger a cascading reaction resulting in the migration of a cell collective.

“Mechanical and biochemical signals in cells fundamentally control everything from homeostasis, development, to diseases,” explains Tsuyoshi Hirashima, leader of the study.

“We knew from past experiments how vital the ERK pathway is in cell activity, but the mechanism of how it can propagate in a collection of cells was incomplete.”

MAPK/ERK is so fundamental that it exists in all cells, controlling a wide range of actions from growth and development to eventual cell death. The pathway is activated when a receptor protein on the cell surface binds with a signaling molecule, resulting in a cascade of proteins and reactions spreading throughout the cell’s interior.

Employing a live imaging technique that can visualize an individual cell’s active ERK pathway, the team began observing the effects of cell movement. What they found was unexpected: when a cell began to extend itself, ERK activity increased, causing the cell to contract.

“Cells are tightly connected and packed together, so when one starts contracting from ERK activation, it pulls in its neighbors,” elaborates Hirashima. This then caused surrounding cells to extend, activating their ERK, resulting in contractions that lead to a kind of tug-of-war propagating into colony movement.

“Researchers had previously proposed that cells extend when ERK is activated, so our results came as quite a surprise.”

The team incorporated these observations into a mathematical model, combining mechano-chemical regulations with quantitative parameters. The output demonstrated consistency with experimental data.

“Our work clearly shows that the ERK-mediated mechano-chemical feedback system generates complicated multicellular patterns,” concludes Hirashima.

“This will provide a new basis for understanding many biological processes, including tissue repair and tumor metastasis.”

###

The paper “ERK-Mediated Mechanochemical Waves Direct Collective Cell Polarization” appeared on 3 June 2020 in Developmental Cell, with doi: 10.1016/j.devcel.2020.05.011

About Kyoto University

Kyoto University is one of Japan and Asia’s premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en

Media Contact
Raymond Kunikane Terhune
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.devcel.2020.05.011

Tags: BiologyBiomechanics/BiophysicsBiotechnologyCell BiologyDevelopmental/Reproductive BiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Telemedicine’s Impact on Epilepsy Care in India

October 25, 2025
blank

Investigating Infectious Bursal Disease in Backyard Chickens

October 25, 2025

Nanobody Vaccine Protects Animals from Respiratory Infections

October 25, 2025

Tyrosine Levels Predict Hepatocellular Carcinoma Risk

October 25, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1280 shares
    Share 511 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    189 shares
    Share 76 Tweet 47
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Telemedicine’s Impact on Epilepsy Care in India

Investigating Infectious Bursal Disease in Backyard Chickens

Nanobody Vaccine Protects Animals from Respiratory Infections

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.