• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, April 16, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Cells adapt ultra-rapidly to zero gravity

Bioengineer by Bioengineer
February 28, 2017
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: C. Thiel und Airbus DS

Mammalian cells are optimally adapted to gravity. But what happens in the microgravity environment of space if the earth's pull disappears? Previously, many experiments exhibited cell changes – after hours or even days in zero gravity. Astronauts, however, returned to Earth without any severe health problems after long missions in space, which begs the question as to how capable cells are of adapting to changes in gravity. Based on real-time readings on the ISS, UZH scientists can now reveal that cells are able to respond to changes in gravitational conditions extremely quickly and keep on functioning. Therefore, the study also provides direct evidence that certain cell functions are linked to gravity.

Test setup and measurement on the ISS

In contrast to space experiments, where analyses are conducted afterwards on Earth, the team headed by UZH scientists Oliver Ullrich and Cora Thiel opted for a different path. They geared their experimental design towards conducting direct measurements in space: From thawing the test cells to the measurements themselves, ESA astronaut Samantha Cristoforetti performed all the operations directly in the lab on the ISS. The data gathered on the space station was then transmitted to Earth. Rigorous internal and external controls excluded any influence other than gravity.

Cell adaptation in 42 seconds

The research team used the so-called oxidative burst – an old evolutionary mechanism to kill off bacteria via defense cells – to study how rat cells responded to changes in gravity. With the aid of centrifuges, Cristoforetti altered the gravitational conditions on the ISS, which enabled the team in the control center to track how the cells reacted. "Ultra-rapidly," explains Oliver Ullrich, a professor from the Institute of Anatomy at the University of Zurich. "Although the immune defense collapsed as soon as zero gravity hit, to our surprise the defense cells made a full recovery within 42 seconds." For Ullrich and Thiel, the direct evidence of a rapid and complete adaptation to zero gravity in less than a minute begs the question as to whether previous cell changes measured after hours or days were also the result of an adaptation process.

Good news for astronauts

"It seems paradoxical," says Thiel: "Cells are able to adapt ultra-rapidly to zero gravity. However, they were never exposed to it in the evolution of life on Earth. Therefore, the results raise more questions regarding the robustness of life and its astonishing adaptability." In any case, as far as Ullrich is concerned the result of the ISS experiment is good news for manned space flight: "There's hope that our cells are able to cope much better with zero gravity than we previously thought."

###

Literature:

Cora S. Thiel, Diane de Zélicourt, Svantje Tauber, Astrid Adrian, Markus Franz, Dana M. Simmet, Kathrin Schoppmann, Swantje Hauschild, Sonja Krammer, Miriam Christen, Gesine Bradacs, Katrin Paulsen, Susanne A. Wolf, Markus Braun, Jason Hatton, Vartan Kurtcuoglu, Stefanie Franke, Samuel Tanner, Samantha Cristoforetti, Beate Sick, Bertold Hock & Oliver Ullrich. Rapid adaptation to microgravity in mammalian macrophage cells. Scientific Reports 7, Article number: 43 (2017). February 27, 2017. DOI: 10.1038/s41598-017-00119-6

http://rdcu.be/pCOF

Space experiment

The research material used by Professor Ullrich and Doctor Thiel was transported to the ISS on the SpaceX-CRS-6 mission by a Falcon 9 rocket and the Dragon space station on April 14, 2015. The research mission was funded by the European Space Agency (ESA) and the German Aerospace Center (DLR).

After years of preparation, the ESA astronaut Samantha Cristoforetti conducted the experiments in the BIOLAB of the COLUMBUS Module on the ISS. The University of Zurich headed the experiment in collaboration with Otto-von-Guericke-University Magdeburg, the Technical University of Munich, Lucerne University of Applied Sciences and Arts, the European Space Agency (ESA), the German Aerospace Center (DLR) and NASA's Kennedy Space Center.

Contact:

Prof. Dr.med. Dr.rer.nat. Oliver Ullrich

Dr. rer.nat. Cora Thiel

Institute of Anatomy

University of Zurich

Phone: +41 44 635 40 60

E-mail: [email protected]

Media Contact

Oliver Ullrich
[email protected]
41-446-354-060
@uzh_news

http://www.uzh.ch

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Simulations reveal how dominant SARS-CoV-2 strain binds to host, succumbs to antibodies

April 16, 2021
IMAGE

A new guide for communicating plant science

April 16, 2021

Neural plasticity depends on this long noncoding RNA’s journey from nucleus to synapse

April 16, 2021

On the pulse of pulsars and polar light

April 16, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesUniversity of WashingtonWeaponryViolence/CriminalsVirologyVaccineWeather/StormsZoology/Veterinary ScienceVirusUrogenital SystemVehiclesUrbanization

Recent Posts

  • Simulations reveal how dominant SARS-CoV-2 strain binds to host, succumbs to antibodies
  • A new guide for communicating plant science
  • Neural plasticity depends on this long noncoding RNA’s journey from nucleus to synapse
  • On the pulse of pulsars and polar light
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In