• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cell type key to successful immunotherapies for chronic viral infections identified

Bioengineer by Bioengineer
February 16, 2023
in Biology
Reading Time: 3 mins read
0
Diagram of the finding. Adapted from the scientific article published in Cell Reports
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international study led by researchers from the Infection Biology Laboratory at the UPF Department of Medicine and Life Sciences (MELIS) establishes that one type of dendritic cells is crucial for the success of immunotherapeutic treatments to control chronic viral infections. These dendritic cells have been found to be key in reactivating exhausted lymphocytes responsible for clearing infected cells to keep the viral load low.

Diagram of the finding. Adapted from the scientific article published in Cell Reports

Credit: Authors of the article

An international study led by researchers from the Infection Biology Laboratory at the UPF Department of Medicine and Life Sciences (MELIS) establishes that one type of dendritic cells is crucial for the success of immunotherapeutic treatments to control chronic viral infections. These dendritic cells have been found to be key in reactivating exhausted lymphocytes responsible for clearing infected cells to keep the viral load low.

Chronic viral infections, such as those caused by human immunodeficiency virus (HIV) or hepatitis B and C viruses, are characterized by a persistent viral load. This is maintained by a balance between the expansion of the virus and the expansion of exhausted T lymphocytes, which, once the viral load increases, become active, multiply and eliminate infected cells.

In HIV-infected patients, infection has been controlled with antiviral therapy that reduces the viral load to below detectable levels. However, this is transitory, as the viral load increases dramatically when treatment is stopped. With 650,000 people worldwide dying from HIV and 1.5 million acquiring the virus each year, there is a need to find a functional cure that controls the virus without causing disease and avoids the side effects and burden on health systems that antiviral therapy entails. Hence, immunotherapies based on checkpoint inhibitors that block proteins that prevent the immune system from attacking infected cells, are considered a promising therapy. 

The study published in Cell Reports determines that the various types of dendritic cells differ in their ability to reactivate exhausted lymphocytes during checkpoint immunotherapy. It also identifies XCR1+ cross-presenting dendritic cells as key elements that trigger exhausted lymphocyte reactivation in checkpoint inhibitor-based immunotherapies. Therefore, XCR1+ cross-presenting dendritic cells are a promising therapeutic target to improve virus control during chronic viral infection.

The study, performed in a mouse model of the chronic lymphocytic choriomeningitis virus -that partly resembles human chronic HIV and hepatitis virus infections-, opens the possibility of considering combination immunotherapies including checkpoint inhibitors that target cross-presenting dendritic cells as an interesting therapy option for HIV-infected individuals.  

“Our findings are an important step forward in understanding the requirements for cure strategies in chronic infections”, says Eva Domenjo, first author of the manuscript. “The next steps now are to improve the duration of the therapeutic benefits and translate the data from the model system to the clinical practice”, adds Andreas Meyerhans, who coordinated the work together with Jordi Argilaguet. 

Considering analogous findings in cancer immunotherapy, this not only argues for immunological similarities between chronic infections and cancers but also gives hope for a timely translation into clinical applications.

Reference article: 

Eva Domenjo-Vila, Valentina Casella, Ryutaro Iwabuchi, Even Fossum, Mireia Pedragosa, Quim Castellví, Paula Cebollada Rica, Tsuneyasu Kaisho, Kazutaka Terahara, Gennady Bocharov, Jordi Argilaguet, and Andreas Meyerhans. “XCR1+ DC are critical for T cell-mediated immunotherapy of chronic viral infections”. Cell Reports, 2023.

This work has been supported by grants from the Spanish Ministry of Science and Innovation, the “la Caixa” Foundation, the Russian Science Foundation, and the Norwegian Research Council.



Journal

Cell Reports

DOI

10.1016/j.celrep.2023.112123

Method of Research

Experimental study

Subject of Research

Cells

Article Title

XCR1+ DCs are critical for T cell-mediated immunotherapy of chronic viral infections

Share12Tweet8Share2ShareShareShare2

Related Posts

Identifying Heat-Tolerant White Fulani Cows Using TOPSIS

Identifying Heat-Tolerant White Fulani Cows Using TOPSIS

November 5, 2025
blank

Sex-Based Cognitive Responses to PM2.5 Risk

November 5, 2025

Scientists Finalize Initial Drafts of Developing Mammalian Brain Cell Atlases

November 5, 2025

SPARTA: An Innovative Approach to Quantifying Evolutionary Uncertainty

November 5, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LDBT: Machine Learning Meets Rapid Cell-Free Testing

Identifying Heat-Tolerant White Fulani Cows Using TOPSIS

Evaluating Hematologic Cancer Drugs with Topological Indices

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.