• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 11, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cell therapy could replace need for kidney transplants

Bioengineer by Bioengineer
March 14, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WINSTON-SALEM, N.C., — March 13 2019, — Wake Forest Institute for Regenerative Medicine (WFIRM) scientists are working on a promising approach for treatment of chronic kidney disease – regeneration of damaged tissues using therapeutic cells.

By harnessing the unique properties of human amniotic fluid-derived stem cells, WFIRM scientists have demonstrated that the cells could potentially help recover organ function in a pre-clinical model of kidney disease.

“Our results indicate that this type of stem cell could be used as an off the shelf universal cell source and may provide an alternative therapeutic strategy for patients suffering from this chronic and debilitating disease,” said senior author James J. Yoo, M.D., Ph.D., a professor of regenerative medicine at WFIRM.

Study results were recently published online ahead of print in the journal Tissue Engineering Part A. This paper is one in a series the research team has published regarding therapies for the treatment of kidney disease. Known worldwide for their pioneering research on 3D bioprinting of tissues and organs, WFIRM researchers have also been tackling kidney disease and the shortage of organs in a variety of ways.

They were first in the world to identify and characterize stem cells derived from amniotic fluid in 2007 and have developed techniques for isolation and expansion of the cells. Amniotic fluid-derived stem cells can be used as a universal cell source because they have the ability to become different cell types as well as the ability to be anti-inflammatory, making them a potential source for regeneration. Unlike pluripotent and adult stem cells, amniotic fluid-derived stem cells are not as likely to provoke an immune system response. Additionally, their use does not lead to risks of tumors or ethical concerns, as with embryonic stem cells.

For this study, researchers found that amniotic fluid stem cells injected into a diseased kidney in a pre-clinical model led to improvement of kidney function based on measured waste levels after 10 weeks. Biopsy findings showed reduced damage to the cluster of capillaries where waste products are filtered from the blood.

“Our studies demonstrate that treatment with amniotic fluid stem cells had positive effects on functional improvement and structural recovery of the kidney,” said WFIRM Director Anthony Atala, M.D., and a co-author of the paper.

Kidney disease is a worldwide public health problem and can manifest in acute and chronic symptoms. More than 30 million American adults are affected by the disease and millions more are at risk of developing it, according to the National Kidney Foundation. Transplantation is the only definitive treatment method that restores kidney function, but has its own challenges with rejection and life-long immunosuppression. There also are not enough donor organs to meet demand.

Sunil George, Ph.D., a WFIRM research fellow and co-author who has been a part of the studies, said further research is being pursued. “It remains to be seen whether injecting more cells or more efficient engraftment of the infused cells enhances improvement of organ function,” he said.

###

The study was supported, in part, by the State of North Carolina and WFIRM. The authors declare no competing interests.

Co-authors also include: Mehran Abolbashan, Tae-Hyoung Kim, Chao Zhang, Julie Allickson, John D. Jackson, Sang Jin Lee and In Kap Ko, all of WFIRM.

Media Contact
Bonnie Davis
[email protected]

Related Journal Article

https://newsroom.wakehealth.edu/News-Releases/2019/03/Cell-Therapy-Could-Replace-Need-for-Kidney-Transplants
http://dx.doi.org/10.1089/ten.TEA.2018.0371

Tags: Medicine/HealthTransplantation
Share13Tweet8Share2ShareShareShare2

Related Posts

Developing Eye Care Guidelines for Prone Ventilation

January 11, 2026

Guillain-Barré Syndrome Linked to TNF Inhibitor in Blau

January 11, 2026

Dual Nanocarriers Target Smad3 and Runx2 in Aortic Valve Disease

January 11, 2026

Psychological Resilience Eases Loneliness in Caregivers

January 11, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    50 shares
    Share 20 Tweet 13
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12
v>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Developing Eye Care Guidelines for Prone Ventilation

Guillain-Barré Syndrome Linked to TNF Inhibitor in Blau

Dual Nanocarriers Target Smad3 and Runx2 in Aortic Valve Disease

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.