• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, May 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Cell of origin affects malignancy and drug sensitivity of brain tumors

Bioengineer by Bioengineer
January 24, 2017
in Science News
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Patients with glioblastoma have very poor prognosis since there are no effective therapies. In a study published in Cell Reports, researchers at Uppsala University have discovered a correlation between the cell type from which the tumour originates and the growth and drug sensitivity of the tumour. More knowledge about the mechanisms behind this correlation could be important for developing more effective drugs against subgroups of glioblastoma.

Glioblastoma is the most common form of primary brain tumour in adults and is essentially lethal. Presently, the development of more effective therapies is hampered by the large degree of tumour heterogeneity, both between different patients and in a single tumour. The heterogeneity between different tumours is partly due to the fact that the tumour can originate from different kinds of brain cells. The tumour's cell of origin can be either an immature neural stem cell or a more differentiated glial cell.

To develop improved therapies for glioblastoma, more knowledge is needed about how the cell of origin affects the characteristics of the cancer cells. Such studies must initially be performed in mice since it is not possible to identify the cell of origin in patient material. In the present study the researchers used several clinically relevant glioblastoma models in mice and found that tumours that originated from immature neural stem cells developed faster than tumours that originated from more differentiated glial cells.

"We discovered that several important characteristics of the cancer cells could be linked to the tumour's cell of origin. Immature neural stem cells gave rise to glioblastomas that grew faster and were more malignant than those that originated from glial cells. Tumours from neural stem cells also contained more glioblastoma stem cells, cells that are believed to give rise to tumour recurrence after therapy," says Lene Uhrbom, senior lecturer at the Department of Immunology, Genetics and Pathology and lead author of the study.

To determine how the cell of origin affected the characteristics of glioblastoma cells, the researchers analysed how the activity of a large number of genes differed between tumours with different origins. They were able to identify a 'gene signature' of almost 200 genes.

"When we compared the gene signature activity of glioblastoma cells from around 60 patients we found that a large number of patients could be divided into subgroups that showed a correlation between gene activity, tumour cell characteristics and cell of origin similar to the one we had seen in the mice study. This indicated that the cell of origin also has a direct influence on the characteristics of human tumours," says Uhrbom.

One feature of the tumour cells that the researchers were particularly interested in was their sensitivity to cancer drugs, and here too they found a correlation with the cell of origin. Glioblastoma cells from patients that could be linked by the gene signature analysis with an immature origin generally showed a higher sensitivity to cancer drugs than glioblastoma cells that were associated with a more differentiated cell of origin.

"We show that the cell of origin is important for the malignancy and drug sensitivity of glioblastoma cells, and that the findings can also be applied to glioblastoma cells from patients. We hope the gene signature we identified can provide the basis for an improved classification of glioblastoma patients and for identifying new targets for therapy," says Uhrbom.

###

Previous study by the same research group: The cell of origin in childhood brain tumours affects susceptibility to therapy (2016-11-16)

Media Contact

Lene Uhrbom
[email protected]
46-184-715-063
@UU_University

http://www.uu.se

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Stem Cell-Derived Islet Survival in Hypoxia

Boosting Stem Cell-Derived Islet Survival in Hypoxia

May 23, 2025
Assessing Breast Cancer Care Quality in Iran

Assessing Breast Cancer Care Quality in Iran

May 23, 2025

Muscle Quality: A Potential Early Indicator of Cognitive Decline

May 23, 2025

Autophagy and Lysosomal Pathways Drive Unconventional Secretion of Parkinson’s Disease Protein

May 23, 2025
Please login to join discussion

POPULAR NEWS

  • Effects of a natural ingredients-based intervention targeting the hallmarks of aging on epigenetic clocks, physical function, and body composition: a single-arm clinical trial

    Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    91 shares
    Share 36 Tweet 23
  • Analysis of Research Grant Terminations at the National Institutes of Health

    79 shares
    Share 32 Tweet 20
  • Health Octo Tool Links Personalized Health, Aging Rate

    68 shares
    Share 27 Tweet 17
  • Universe Fades Faster Than Expected—Yet Still Over Vast Timescales

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Stem Cell-Derived Islet Survival in Hypoxia

Assessing Breast Cancer Care Quality in Iran

Muscle Quality: A Potential Early Indicator of Cognitive Decline

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.