• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

Cell density remains constant as brain shrinks with age

Bioengineer by Bioengineer
June 13, 2015
in Neuroscience
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New, ultra-high-field magnetic resonance images (MRI) of the brain by researchers at the University of Illinois at Chicago provide the most detailed images to date to show that while the brain shrinks with age, brain cell density remains constant.

brain

Brain cell density remains constant with age among cognitively normal adults. Photo Credit: Dr. Keith Thulborn

The study, of cognitively normal young and old adults, was published in the journal NMR in Biomedicine.

The images provide the first evidence that in normal aging, cell density is preserved throughout the brain, not just in specific regions, as previous studies on human brain tissue have shown. The findings also suggest that the maintenance of brain cell density may protect against cognitive impairment as the brain gradually shrinks in normal aging.

The images were made at UIC by a powerful 9.4-Tesla MRI, the first of its kind for human imaging. The 9.4 T magnetic field is more than three times stronger than that of a typical MRI machine in a doctor’s office and is currently approved only for research. The strongest MRI units approved for clinical use are 3 T.

‘The information provided by these 9.4-Tesla scans may be very useful in helping us to detect tiny losses of brain cells and the reduction in cell density that characterizes the early stages of neurodegenerative diseases that can take decades to develop before symptoms appear, like Alzheimer’s disease,’ said Dr. Keith Thulborn, director of MRI research in the UIC College of Medicine and lead author of the report.

‘If we can identify when Alzheimer’s pathology starts, the efficacy of new drugs or other interventions to slow or prevent Alzheimer’s disease can be tested and monitored when the disease starts, instead of after it’s developed for 20 or 30 years and becomes clinically apparent,’ said Thulborn, who is professor of radiology, physiology and biophysics.

Neuroscientists have long known that the brain shrinks with age, but for a long time they thought the loss in volume was associated with a loss of brain cells. That was disproven by studies that showed it is the neurons themselves that shrink while the number of cells remains the same in normal older adults.

Thulborn and his colleagues scanned the brains of 49 cognitively normal adults ranging in age from 21 to 80. All had at least a college education and were employed or, if retired, were active in their communities. All were without major medical, neurological or psychiatric disease and scored within the normal range for mental status.

The 9.4 Tesla MRI measures sodium ions, which are less concentrated by several orders of magnitude than the fat and water molecules detected with standard MRI. Sodium ions are present throughout the body and are pumped in and out of neurons to generate the electric potentials needed to spark nerve impulses. Sodium concentrations in the brain reflect neuron density. Areas of low sodium concentration indicate lots of neurons packed tightly together, while higher sodium concentration can indicate more space between cells — or the loss of cells, as in the case of neurodegenerative diseases.

Thulborn thinks the ultra-high-field scanners eventually will be approved for clinical use.

‘We can use the 9.4 T to look at brain cell loss in real time in patients experiencing stroke, or to see whether chemotherapy for brain tumors is working in higher resolution that is just not available using the current 3 T clinical scanners,’ he said.

Story Source:

The above story is based on materials provided by the University of Illinois.

Share13Tweet8Share2ShareShareShare2

Related Posts

Redox biomarker could predict progression of epilepsy

October 5, 2016

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Food Focus in Binge Eating: Training Limitations Revealed

Double Disadvantage: The Impact is Greater Than Twice as Severe

Oxidative Stress Linked to Abnormal Repetitive Behaviors in Mice

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.