• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cell death in porpoises caused by environmental pollutants

Bioengineer by Bioengineer
July 20, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cells isolated from a stranded dead porpoise predict the threat of pollutants to the porpoise population in the wild.

IMAGE

Credit: Reprinted with permission from Environmental Science & Technology. © 2020 American Chemical Society

A recent study just published in Environmental Science & Technology identified the toxicological risks of environmental pollutants to finless porpoises (Neophocaena asiaeorientalis). Man-made chemicals synthesized for human activities threaten the health of marine mammals. These chemicals, including persistent organic pollutants (POPs), have long been known to accumulate at high levels in many dolphin species. The POPs levels of finless porpoises inhabiting the Seto Inland Sea are higher than those of other cetacean species distributed in the waters near Japan, and the effects of toxicity have been a concern. Nevertheless, ecotoxicological studies of wild dolphins are difficult due to legal and ethical considerations, and information is lacking. Researchers in the Center for Marine Environmental Studies (CMES), Ehime University, together with collaborators, have successfully isolated the fibroblast cells from a finless porpoise stranded in the Seto Inland Sea, Japan revealing the toxicological risk of pollutants of concern in the local population.

Cell culture and exposure to pollutants

Fibroblasts of a finless porpoise were collected from a stranded individual. Seventeen chemicals including dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD), industrial chemicals (polychlorinated biphenyls, PCBs), metabolites of PCBs (hydroxylated PCBs, OH-PCBs), frame retardants (polybrominated biphenyls, PBDEs), insecticides (dichlorodiphenyltrichloroethane and their metabolites, DDTs), and methylmercury were tested for their cellular toxicities.

Effects of pollutants on fibroblasts

Most pollutants induced cell death at higher concentrations, and dioxin-like compounds (TCDD and dioxin-like PCBs) were more toxic than the other chemicals tested. Toxic potencies of OH-PCBs and its precursor PCBs were different for each endpoint, and these compounds may contribute to cell damage by different mechanisms. Dose-dependent cell damage was also observed with DDTs, which accumulated in relatively high concentrations in many whale species. Among DDTs, p,p’-DDT was the most potent for the cytotoxicity, whereas p,p’-DDE notably affected the cell viability. Methylmercury also induced cellular necrosis at the highest test concentration (100 μM).

Risk assessment at the population level

To assess the risk of the porpoise population inhabiting the Seto Inland Sea, the research group estimated the EARs (exposure-activity ratios). EAR is the emerging concept of finding high-risk chemical substances by comparing the concentrations at which cytotoxicity was observed with the concentration of the chemicals in animal bodies. Collectively, PCBs and DDTs were shown to be at high risks and could cause cytotoxicity, apoptosis, and reduced cell viability in the porpoise population in the Seto Inland Sea.

This study successfully evaluated the risks of environmental pollutants using fibroblasts isolated from a dead porpoise. There is an urgent need to better and comprehensively understand the risks of pollutants not only in this species but also in other marine mammals, and it is important to implement measures to reduce the load of high-risk pollutants in the marine environment.

###

Media Contact
Public Relations Division
[email protected]

Original Source

https://doi.org/10.1021/acs.est.9b07471

Related Journal Article

http://dx.doi.org/10.1021/acs.est.9b07471

Tags: BiologyEnvironmental HealthMarine/Freshwater BiologyPollution/RemediationToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

Turning Noise into Power: Unveiling the Symmetric Ratchet Motor Breakthrough

Turning Noise into Power: Unveiling the Symmetric Ratchet Motor Breakthrough

September 11, 2025
Innovative Protein Sources for Dairy Cattle Nutrition

Innovative Protein Sources for Dairy Cattle Nutrition

September 11, 2025

Scientists Identify Astrocytic “Brake” That Inhibits Spinal Cord Repair

September 11, 2025

Worms Uncover the True Crowded Nature of Cells

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Myeloid Progenitor Dysregulation Drives Tumor Macrophages

Predicting BMI Changes in Adolescent Anorexia Treatment

ABCA7 Variants Alter Neuronal Mitochondria, Phosphatidylcholine

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.