• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cell-culture based test systems for anticancer drug screening

Bioengineer by Bioengineer
May 21, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new paper by Kazan Federal University appeared in Frontiers in Bioengineering and Biotechnology.

IMAGE

Credit: Kazan Federal University

As we know, a malignant tumor is a complex system of mutated cells which constantly interacts with and involves healthy cells in the body. This specificity of malignant neoplasms greatly complicates the process of therapy, since the tumor quickly becomes resistant to chemotherapy drugs. Thus, there is a growing demand not only for new drugs, but also for new in vitro test systems that take into account the maximum possible number of tumor characteristics, and with the help of which it would be possible to select precisely those antitumor agents that would be quite effective under in vivo conditions and in the clinic.

The Gene and Cell Technology Lab team at Kazan Federal University has been working on this problem for five years.

In this paper, an explanation is offered of the existing in vitro test systems for the selection of potentially effective antitumor drugs, and potential research areas are proposed. Currently, there is a problem with conducting rational primary screening of substances with antitumor activity. The pharmaceutical industry is using mainly two-dimensional in vitro models, that is to say, cells growing on a flat surface. In particular, one of these models is the NCI60 panel, which consists of 60 different human cell lines of tumor origin. This is a simple and convenient tool for primary screening; however, two-dimensional models do not take into account the natural three-dimensional architecture of the tumor, complex intercellular interactions and, as a result, are not able to provide objective results. Thus, in preclinical screening, there are more and more requests for more complex models that take into account the entirety of tumor factors.

For example, using the Boyden chamber and microfluidic chip, it is possible to assess the ability of tumor cells to migrate and invade, that is, to predict how aggressively the tumor will behave in the body. Of great interest are three-dimensional tumor models, which are created with the use of several techniques. These include the use of a matrix framework in which the cells are located; the spheroid technique, in which the cells are “hanged” in the medium and form spheres; as well as the organoid method, which is based on the cultivation of embryonic stem cells or tumor explants (pieces of tissue isolated from the patient). Another promising technique is three-dimensional bioprinting, which opens up great opportunities for the creation of realistic models of tumor tissue. Moreover, in each of the techniques, it is possible to use not only tumor cells but also cells that are usual components of tumor tissue in the body – fibroblasts, stem cells, immune cells, etc. Thus, this review gives an idea of the screening of potential antitumor drugs using in vitro models, which is of interest to researchers and clinicians from various fields, including pharmaceutics, preclinical studies, and cell biology.

The development of new approaches to the screening of anticancer drugs is pertinent in light of the growing prevalence of cancer. The selection of an appropriate tumor model at the stage of in vitro drug testing provides a reduction in financial and time costs for the search and testing of promising antitumor drugs.

One of the trends of the last decade has been the use of 3D bioprinting, thanks to which, in theory, it is possible to print fabric with the desired architecture with a sufficiently high resolution. Although at the moment there is no universal protocol for such printing or that of a standard type of tumor tissue used with it, the importance of its further development is indisputable.

###

Media Contact
Yury Nurmeev
[email protected]

Original Source

https://kpfu.ru/eng/news-eng/cell-culture-test-systems-anticancer-drug.html

Related Journal Article

http://dx.doi.org/10.3389/fbioe.2020.00322

Tags: cancerCell BiologyMedicine/HealthMolecular BiologyPharmaceutical Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

December 3, 2025

Botanical Extracts’ Antibacterial Activity Boosted by Enhancers

December 3, 2025

Global Guidelines for Shared Decision-Making in Valvular Heart Disease

December 3, 2025

Hidradenitis Suppurativa Remission Achieved Using Bacteriophage Therapy

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Cancer Immunotherapy by Targeting DNA Repair

Evaluating eGFR Equations in Chinese Children

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.