• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

CDC/WHO Ebola guidelines could put sewer workers at risk

Bioengineer by Bioengineer
April 11, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research from Drexel University and the University of Pittsburgh suggests that guidelines for safe disposal of liquid waste from patients being treated for the Ebola virus might not go far enough to protect water treatment workers from being exposed. In a study recently published in the journal Water Environment Research, a group of environmental engineering researchers reports that sewer workers downstream of hospitals and treatment centers could contract Ebola via inhalation — a risk that is not currently accounted for in the Centers For Disease Control and Prevention or World Health Organization Ebola response protocol.

The study, "Risks from Ebolavirus Discharge From Hospitals to Sewer Workers," authored by Charles Haas, PhD, LD Betz professor in Drexel's College of Engineering and head of the Civil, Architectural and Environmental Engineering Department; and Leonard Casson, PhD, and Kyle Bibby, PhD, from Pitt's Swanson School of Engineering, takes the first steps toward understanding the risk that this untreated waste poses to the people in the water treatment process who work in close proximity to it.

"During the 2014-16 Ebola outbreak we had our first case of Ebola treated in the U.S. and by the end 11 individuals had been treated here–so this is certainly an area of risk assessment that we need to examine more closely," Haas said.

Initial guidelines issued by the WHO during the outbreak suggested that liquid waste generated by individuals being treated for Ebola could be disposed of via sanitary sewer or pit latrine without additional treatment. Months later it issued more conservative guidelines that suggested containing the waste in a holding tank before releasing it into the water treatment system. But according to the researchers, neither of these advisories accounted for risk to the sewer workers.

"While current WHO and CDC guidance for disposal of liquid waste from patients undergoing treatment for Ebola virus disease at hospitals in the U.S. is to manage patient excreta as ordinary wastewater without pretreatment. The potential for Ebolavirus transmission via liquid waste discharged into the wastewater environment is currently unknown," the authors write. "Possible worker inhalation exposure to Ebolavirus-contaminated aerosols in the sewer continues to be a concern within the wastewater treatment community."

The team arrived at its conclusions by first talking to workers at urban wastewater treatment facilities to understand where and under what conditions they might come in contact with untreated sewage aerosols. The researchers then looked at previous Ebola data to create a model of its behavior under similar conditions — from which they conducted a standardized microbial risk assessment analysis that was developed by Haas.

It took into account variables such as the amount of waste produced during a treatment period, the degree to which it is diluted, the length of time between its disposal at the hospital and when sewer workers would encounter it and the concentration of viable viruses that could be in the air at treatment facilities.

A worker's risk of exposure varies with the time spent in the contaminated area and whether or not they're wearing properly fitting protective gear — so the team looked at what the exposure risk would be given a range of protection and viral particle concentration scenarios.

"Under the least-favorable scenario, the potential risk of developing Ebola virus disease from inhalation exposure is a value higher than many risk managers may be willing to accept," they report. "Although further data gathering efforts are necessary to improve the prevision of the risk projections, the results suggest that the potential risk that sewer workers face when operating in a wastewater collection system downstream from a hospital receiving Ebola patients warrants further attention and current authoritative guidance for Ebolavirus liquid waste disposal may be insufficiently protective of sewer worker safety."

While this study suggests that new guidelines from the leading public health authorities are likely in order, the researchers acknowledge that their work is part of the iterative process of understanding how to safely contain and treat the virus.

This study builds on Haas and Bibby's previous work, which has shaped the way experts understand Ebola risk. Their research on how long Ebola can survive outside the body raised important questions about how exposure can occur and how long patients should be quarantined.

"We find this area of risk assessment to be particularly vital because of the preponderance of questions that remain about how long Ebolavirus can survive outside the body," Haas said. "One thing we do know from previous research is that it is possible to inhale the virus to cause a risk — and it wouldn't take much. At this point we haven't seen a confirmed case of somebody contracting Ebola in this way, and our hope is that this work can contribute to revised guidelines that will keep it that way."

###

Media Contact

Britt Faulstick
[email protected]
215-895-2617
@DrexelNews

http://www.Drexel.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Common Synaptic Pathways in Alzheimer’s and Parkinson’s Disease Open New Avenues for Treatment

November 5, 2025
Novel Asymmetric Stress Techniques Enhance Dislocation Density in Brittle Superconductors for Improved Vortex Pinning

Novel Asymmetric Stress Techniques Enhance Dislocation Density in Brittle Superconductors for Improved Vortex Pinning

November 5, 2025

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025

Nomogram Developed for Sarcopenia Screening in Osteoporosis

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Common Synaptic Pathways in Alzheimer’s and Parkinson’s Disease Open New Avenues for Treatment

Novel Asymmetric Stress Techniques Enhance Dislocation Density in Brittle Superconductors for Improved Vortex Pinning

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.