• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Causes of concrete and asphalt deterioration explained

Bioengineer by Bioengineer
May 13, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Akihiro Moriyoshi, et al. PLOS ONE. May 13, 2021

Scientists reveal that the deterioration of modern concrete and asphalt structures is due to the presence of trace quantities of organic matter in these structures.

Cement and asphalt are vital to modern construction materials; cement is used for the construction of various buildings and structures, while asphalt is primarily used for highways and runways. They have been widely used for these purposes since the 1800s. It has been observed modern concrete structures and asphalt structures tend to deteriorate much faster than historical structures, but the reason for this phenomenon was unknown.

A team of scientists from six institutions, including Akihiro Moriyoshi, Emeritus Professor Hokkaido University, have revealed that the presence of trace quantities of organic matter in modern concrete structures and asphalt pavements drive the deterioration of these structures. Their findings, which include novel methods to assess deterioration, were published in the journal PLOS ONE.

The deterioration of modern concrete structures and asphalt pavements are a major issue. The features that lead to deterioration include cracks, disaggregation (breakdown into fine white powder) and delamination (separation into layers). These deteriorated structures are unsafe for their intended purposes; rapid deterioration reduces the expected lifespan of structures, thereby increasing the costs for maintenance or replacement.

The scientists set out to develop a new method to assess the rate of deterioration in concrete. The current method is based on the width of surface cracks in concrete and a simple chemical test; however, it only gives an incomplete picture of the level of damage. During their experiments, the scientists happened to notice that a strange odor developed when commercial cement was mixed with water. They hypothesized that organic matter was responsible for the odor, and investigated the effect it has on deterioration of concrete.

The scientists developed the one-dimensional transient moisture permeation apparatus to accurately reproduce the field environmental conditions that concrete structures and asphalt pavements are exposed to, in the laboratory, over a period of 24 hours. When combined with CT scans, this method can be used to evaluate the precise extent of the damage. They tested a variety of asphalt samples from Japan dating back to 1960; a number of concrete samples from across the world were also tested, and a 120-year-old concrete sample was used as a reference.

The scientists showed that there are a number of organic molecules, from diverse sources, present in modern concrete structures and asphalt pavements: phthalates, diesel exhaust particulates, surfactants, and windshield washer fluids. These molecules are either introduced during the manufacturing process — the contents of phthalates, phosphate compounds, and AE water reducing agents present in commercially available cements are 0.0012%, 0.12%, and 0.25%, respectively — or absorbed from the environment, and cause rapid deterioration of concrete structures and asphalt pavements.

Of the organic matter present in cement, phthalates have the highest effect on deterioration more than phosphates and AE water reducing agents. Organic matter in water accelerates deterioration of asphalt pavements. The scientists also showed that crack width and length is the best determinant of concrete damage, while the degree of formation of amorphization is the best determinant of deterioration. They believe that their findings can be used to develop novel formulations for long-lasting concrete structures and asphalt pavements.

###

Media Contact
Sohail Keegan Pinto
[email protected]

Original Source

https://www.global.hokudai.ac.jp/blog/causes-of-concrete-and-asphalt-deterioration-explained/

Related Journal Article

http://dx.doi.org/10.1371/journal.pone.0249761

Tags: Civil EngineeringMaterialsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

UVA Secures $16M DOE Grant to Establish Cutting-Edge Predictive Science Simulation Center

UVA Secures $16M DOE Grant to Establish Cutting-Edge Predictive Science Simulation Center

September 17, 2025
A Motor-Sparing Local Anesthetic: Is It Within Reach?

A Motor-Sparing Local Anesthetic: Is It Within Reach?

September 17, 2025

Protein Chemist Secures NIH Grant to Explore Mechanisms of Inflammation

September 17, 2025

Engineering the Future: How 3D Printing is Revolutionizing Bioactive Implant Design and Materials

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genetic Testing Forecasts Individual Responses to Weight-Loss Medications

Zn-MOF: Pioneering Design for Future Supercapacitors

UC San Diego Health Recognized as a Leader in Quality Care Performance

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.