• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, January 26, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Catching a tumor in a spider’s web

Bioengineer by Bioengineer
November 10, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: VIB-Ine Dehandschutter

After a decade of research, the Belgian Switch Laboratory (VIB/KU Leuven) has revealed a new designer molecule that inhibits a well-validated cancer driver through the mechanism of amyloid formation. This work demonstrates that amyloid structures can be used to rationally develop a novel class of biotechnological molecules that are able to fight a wide array of diseases. After the publication of this research in the leading journal Science, next steps to translate this groundbreaking technology, branded Pept-inTM into direct benefits for patients are already being explored by VIB.

Proteins in boiled eggs, beer foam and spider silk all share a similar structural element: amyloid. These structures are active in humans as well, playing a role in processes such as melanin production and cellular hormone storage. However, amyloids are also associated with diseases like cataracts, Alzheimer's and blood clotting disorders. The Switch Laboratory, led by professors Frederic Rousseau and Joost Schymkowitz, has now invented a design principle that could be used to destroy the function of virtually any protein based on the properties of amyloids.

Catching tumors

The first validated result of this new technology is called vascin, a designer amyloid that targets a well-known cancer target. In short, vascin penetrates a cell, and induces the formation of protein aggregates of its target protein, VEGFR2. These 'clumps' are the result of VEGFR2 protein that started sticking together, making it nonfunctional. Because VEGFR2 is crucial to the survival of certain cancer types, its inactivation kills the cancer cells and stops the tumor's growth.

Prof. Frederic Rousseau (VIB-KU Leuven): "One could compare it to 'catching tumors in a spider's web'. By artificially imitating the formation of protein clumps, we can inhibit molecules that play a central role in several diseases. Because these principles apply to virtually any protein, our approach may not only be useful in developing future cancer therapies, but also in treating drug-resistant infections."

Validated technology

The invention of the Pept-in™ technology dates back several years and is subject to broad patent protection. Meanwhile, the Switch Lab, in collaboration with several other research groups, has shown that this technology could have many applications, from treating superbug and fungal infections to engineering improved crops.

Prof. Joost Schymkowitz (VIB-KU Leuven): "Although we don't yet know if functional amyloids could be used in humans for therapeutic applications, the potential for novel drugs is huge. Our team will now spend the coming years trying to turn this into direct benefits for patients."

New business strategies

In close collaboration with the Switch Lab, VIB's tech transfer team is actively pursuing the translation of this fine piece of top science into societal value.

Dr. Els Beirnaert (Senior Manager New Ventures VIB): "This technology differentiates itself in many aspects from competing platforms. Its novel mode of action, its designability and potential to knock down challenging intracellular disease targets make this designer technology an attractive basis for the development of novel groundbreaking medicines for a variety of diseases."

###

Media Contact

Sooike Stoops
[email protected]
32-924-46611
@VIBLifeSciences

http://www.vib.be

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Impact of patient-reported symptom information on lumbar spine MRI Interpretation

January 25, 2021
IMAGE

Governments need to set clear rules for vaccinating health care workers against COVID-19

January 25, 2021

In ED patients with chest and abdominal pain, care delivered by physicians and APPs is similar

January 25, 2021

New book on Influenza: The Cutting Edge from CSHLPress

January 25, 2021
Next Post

Self-healing materials for semi-dry conditions

Researchers at CHLA receive grant to study new way of battling resistant

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    68 shares
    Share 27 Tweet 17
  • New drug form may help treat osteoporosis, calcium-related disorders

    41 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Medicine/HealthInfectious/Emerging DiseasesBiologycancerCell BiologyMaterialsGeneticsClimate ChangeTechnology/Engineering/Computer ScienceEcology/EnvironmentPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Impact of patient-reported symptom information on lumbar spine MRI Interpretation
  • Governments need to set clear rules for vaccinating health care workers against COVID-19
  • In ED patients with chest and abdominal pain, care delivered by physicians and APPs is similar
  • New book on Influenza: The Cutting Edge from CSHLPress
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In