• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, December 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cataloging breast cells to find cancer origins

Bioengineer by Bioengineer
May 14, 2021
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Camila dos Santos/dos Santos lab, CSHL/2021

What if you could predict which cells might become cancerous? Breast tissue changes dramatically throughout a woman’s life, so finding markers for sudden changes that can lead to cancer is especially difficult. Cold Spring Harbor Laboratory (CSHL) Associate Professor Camila dos Santos and her team identified and cataloged thousands of normal human and mouse breast cell types. The new catalog redefines healthy breast tissue so that when something goes awry, scientists can pinpoint its origin.

Any breast cell could become cancerous. Dos Santos says:

“To understand breast cancer risk, you have to understand normal breast cells first, so when we think about preventive and even targeting therapies, you would be preventing the right cell types from developing to cancer cells.”

A traditional way to catalog cells is by tracking a few signature genes related to the cell’s function. To classify cells more extensively, dos Santos’ team turned to a technique known as single-cell RNA sequencing. They tracked the activity of several genes in over 15,000 cells in mouse and human breast tissue. Samantha Henry, a Stony Brook University graduate student-in-residence in dos Santos’ lab, says:

“We really created a whole catalog of many genes for each cell population to better define them. And when I say there were a lot of genes, there were a lot of genes and it took a long time to get through.”

One cell group included estrogen receptor-positive cells, which are generally amenable to treatment. But dos Santos’ team found that this group could be split into several subpopulations, where each one might have different responses to therapies.

The team, in collaboration with computational biologist CSHL Professor Adam Siepel and his team, learned that mice and human breast cells had similar genetic profiles, demonstrating why studies in mice are likely to be relevant to humans. Marygrace Trousdell, a computational science developer in the dos Santos lab, says:

“We’re always finding ourselves struggling with definitive classifications of certain cell types. Sometimes I think I’ve seen every gene out there, and then something else will pop up.”

Currently, the lab is trying to distinguish normal genetic shifts from those associated with cancer. Dos Santos hopes that her catalog of breast cell types will point to which kinds of cells to monitor and point researchers toward treatment options in the future.

###

Media Contact
Sara Roncero-Menendez
[email protected]

Original Source

https://www.cshl.edu/cataloging-breast-cells-to-find-cancer-origins/

Related Journal Article

http://dx.doi.org/10.1007/s10911-021-09486-3

Tags: BiologyBreast CancercancerGeneticsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Neocortical Neuron Identity Emerges Independently of Position

December 31, 2025

Study Reveals Neonatal MIS-N Linked to Maternal COVID-19

December 31, 2025

TP53-LGALS4 Axis Enhances Anti-PD-L1 Colorectal Cancer Therapy

December 31, 2025

Rethinking Gender Inference in Health Algorithms

December 31, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    101 shares
    Share 40 Tweet 25
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    71 shares
    Share 28 Tweet 18

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neocortical Neuron Identity Emerges Independently of Position

Study Reveals Neonatal MIS-N Linked to Maternal COVID-19

TP53-LGALS4 Axis Enhances Anti-PD-L1 Colorectal Cancer Therapy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.