• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Cashing in on marine byproducts

Bioengineer by Bioengineer
September 8, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Seafood shells full of nutrients and flavor — research

IMAGE

Credit: Flinders University

As exploitation of wild fisheries and marine environments threaten food supplies, Flinders University scientists are finding sustainable new ways to convert biowaste, algal biomass and even beached seaweed into valuable dietary proteins and other products.

In one of several projects under way at the Flinders Centre for Marine Bioproducts Development, researchers are looking to extract value from crayfish shells and other marine waste via a ‘green’ fluidic processing machine developed at the University.

“As world populations grow, so will demand for dietary proteins and protein-derived products and this cannot be met using traditional protein sources,” says Professor Kirsten Heimann, who says millions of tonnes of sea catches produce bycatch, shells, bones, heads and other parts wasted during the processing of marine and freshwater species.

Seafood processing by-products (SPBs) and microalgae are promising resources that can fill the demand gap for proteins and protein derivatives, they say in a new publication.

“These biomaterials are a rich source of proteins with high nutritional quality while protein hydrolysates and biopeptides derived from these marine proteins possess several useful bioactivities for commercial applications in multiple industries,” adds Flinders University co-author Trung Nguyen in the paper published in Marine Drugs.

“Efficient utilisation of these marine biomaterials for protein recovery would not only supplement global demand and save natural bioresources but would also successfully address the financial and environmental burdens of biowaste, paving the way for greener production and a circular economy.”

Value-adding also looks promising with many of the bioactive protein-derived products gaining attention to promote human health including in drug discovery, nutraceutical and pharmaceutical developments. Estimates of the commercial value of these therapeutic protein-based products in 2015 was US$174.7 billion and is predicted to reach US$266.6 billion in 2021, leading to a two-fold increase in demand of protein-derived products.

Globally, 32 million tonnes of SPBs are estimated to be produced annually which represents an inexpensive resource for protein recovery while technical advantages in microalgal biomass production would yield secure protein supplies with minimal competition for arable land and freshwater resources.

This comprehensive review article analyses the potential of using SPBs and microalgae for protein recovery and production critically assessing the feasibility of current and emerging technologies used for the process development.

The nutritional quality, functionalities, and bioactivities of the extracted proteins and derived products together with their potential applications for commercial product development are also systematically summarised and discussed in the free online paper.

###

The Flinders research team aims to provide sustainable solutions and a strong business case for expanding Australia’s marine bioproducts industry to become internationally competitive and attractive to investors and export-oriented markets.

The article, ‘Protein Recovery from Underutilised Marine Bioresources for Product Development with Nutraceutical and Pharmaceutical Bioactivities’ (2020) by Trung T Nguyen, Kirsten Heimann and Wei Zhang has been published in Marine Drugs, 2020 (DOI: 10.3390/md18080391

The project used patented technology, the vortex fluidic device, that represents a new chemicals processing capability, enabling new synthesis strategies with a diversity of research and industrial applications.

Media Contact
Professor Kirsten Heimann
[email protected]

Related Journal Article

http://dx.doi.org/10.3390/md18080391

Tags: AgricultureBiochemistryBiologyFisheries/AquacultureFood/Food ScienceMarine/Freshwater BiologyMicrobiologyNutrition/Nutrients
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025
Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

November 5, 2025

New Lightning Forecasting Technology Aims to Safeguard Future Aircraft

November 4, 2025

New Research Reveals Light’s Power to Reshape Atom-Thin Semiconductors for Advanced Optical Devices

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of RISE Program on Contraceptive Equity in Uganda

Common Synaptic Pathways in Alzheimer’s and Parkinson’s Disease Open New Avenues for Treatment

Novel Asymmetric Stress Techniques Enhance Dislocation Density in Brittle Superconductors for Improved Vortex Pinning

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.