• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Case Western Reserve University research team identifies new mechanism for protecting DNA

Bioengineer by Bioengineer
January 18, 2022
in Biology
Reading Time: 3 mins read
0
Photo illustration of DNA strands
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CLEVELAND—Researchers from Case Western Reserve University have identified a new mechanism by which a protein known for repairing damaged DNA also protects the integrity of DNA by preserving its structural shape.

Photo illustration of DNA strands

Credit: Case Western Reserve University

CLEVELAND—Researchers from Case Western Reserve University have identified a new mechanism by which a protein known for repairing damaged DNA also protects the integrity of DNA by preserving its structural shape.

The discovery, involving the protein 53BP1, offers insight into understanding how cells maintain the integrity of DNA in the nucleus, which is critical for preventing diseases like premature aging and cancer.

A research team led by Youwei Zhang, an associate professor of pharmacology at the Case Western Reserve School of Medicine and a member of the Molecular Oncology Program at the Case Comprehensive Cancer Center, conducted the study. The findings were published (Jan. 18, 2022) in Nature Communications.

DNA, or deoxyribonucleic acid, is the chemical name for the molecule that carries genetic instructions in all living things.

53BP1 is a large protein known for determining how cells will repair a particular type of DNA damage—DNA double-strand break (DSB), in which the two strands of DNA are both broken, leaving a free DNA end floating around in the cell’s nucleus.

When DSB occurs, if not repaired, DNA ends could fuse to what it should not under normal conditions, which leads to the disruption of genetic information. In the short term, cells with unrepaired DNA may kill themselves off; but if a cell lost this self-surveillance, it may start the journey toward cancer.

The study

In this study, the team discovered 53BP1 has a biological function in mediating the structure of DNA, specifically at a highly compacted region called heterochromatin.  

The researchers found that this new function involves a new form of activity of 53BP1, in which the protein accumulates at the condensed DNA regions and forms small liquid droplets—a process called liquid-liquid phase separation, similar to mixing oil with water for salad dressing.

The team determined how 53BP1 can form liquid droplets: They found that this process requires the participation of other proteins known to support the structure of those highly condensed DNA. But, in turn, they discovered that 53BP1 actually stabilized the gathering of these proteins at these DNA regions, which is important for keeping the overall function of the DNA.

They then carried out detailed molecular analysis to break the large protein into small pieces and determined which pieces are important for the liquid droplet formation of 53BP1. They further changed amino acid of a specific position of the 53BP1 protein and determined the contribution of several amino acids that are critical for this new function.

“More excitingly, through these comprehensive analyses, we found that this new protective activity of 53BP1 is independent of the widely known role of this protein in repairing DNA damage, indicating a totally new function of 53BP1,” Zhang said. “Our study suggests that, in addition to DSB repair modulation, 53BP1 contributes to the maintenance of genome stability through the formation of these liquid droplets.”

With this new information, Zhang and his team hope to better understand how diseases like cancer can be prevented, and even design therapies that use this new feature of 53BP1 to treat cancers in the future.

Zhang’s lab focuses on understanding cell biology to develop anticancer therapies—specifically how cells protect the stability of DNA. Without that protection, it can cause genome instability and eventually lead to the early onset of degenerative disorders such as premature aging and cancer.

“Our goal,” Zhang said, “is to understand the molecular mechanisms that maintain the genome stability in human cells by identifying the genes and the signaling pathways involved. Long term, we hope to translate this knowledge into potential anticancer treatment strategies.”

                                                                        ###

Case Western Reserve University is one of the country’s leading private research institutions. Located in Cleveland, we offer a unique combination of forward-thinking educational opportunities in an inspiring cultural setting. Our leading-edge faculty engage in teaching and research in a collaborative, hands-on environment. Our nationally recognized programs include arts and sciences, dental medicine, engineering, law, management, medicine, nursing and social work. About 5,800 undergraduate and 6,300 graduate students comprise our student body. Visit case.edu to see how Case Western Reserve thinks beyond the possible.



Journal

Nature Communications

DOI

10.1038/s41467-022-28019-y

Method of Research

Imaging analysis

Subject of Research

Cells

Article Title

53BP1 regulates heterochromatin through liquid phase separation

Article Publication Date

18-Jan-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Nitrogen Supplementation: Impact on Cattle Nutrition and Metabolism

Nitrogen Supplementation: Impact on Cattle Nutrition and Metabolism

September 9, 2025
blank

Taenia Pisiformis Infection Alters Pregnant Rabbits’ Immune Response

September 9, 2025

Tracing the Origins of Wnt Signaling Uncovers a Protein Superfamily Spanning the Tree of Life

September 9, 2025

From Quantum Mechanics to Quantum Microbes: A Yale Scientist’s Revolutionary Journey of Discovery

September 9, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nitrogen Supplementation: Impact on Cattle Nutrition and Metabolism

York University Study Finds Combined Alcohol and Cannabis Use Increases Risks for Young Adults

Thriving Amidst Venus’s Hostile Environment: Discovering Rare Earths and Essential Metals

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.