• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Cascaded metasurfaces for dynamic control of THz wavefronts

Bioengineer by Bioengineer
July 23, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Dynamic control of THz wavefronts demonstrated by rotating layers of cascaded metasurfaces

IMAGE

Credit: Shanghai University

Electromagnetic (EM) waves in the terahertz (THz) regime contribute to important applications in communications, security imaging, and bio- and chemical sensing. Such wide applicability has resulted in significant technological progress. However, due to weak interactions between natural materials and THz waves, conventional THz devices are typically bulky and inefficient. Although ultracompact active THz devices do exist, current electronic and photonic approaches to dynamic control have lacked efficiency.

Recently, rapid developments in metasurfaces have opened new possibilities for the creation of high-efficiency, ultracompact THz devices for dynamic wavefront control. Ultrathin metamaterials formed by subwavelength planar microstructures (i.e., meta-atoms), metasurfaces enable tailored optical responses for control of EM wavefronts. By constructing metasurfaces that possess certain predesigned phase profiles for transmitted or reflected waves, scientists have demonstrated fascinating wave-manipulation effects, such as anomalous light deflection, polarization manipulation, photonic spin-Hall, and holograms.

Moreover, integrating active elements with individual meta-atoms inside passive metasurfaces allows for “active” metadevices that can dynamically manipulate EM wavefronts. While active elements in deep subwavelengths are easily found in the microwave regime (e.g., PIN diodes and varactors), and successfully contribute to active metadevices for beam-steering, programmable holograms, and dynamic imaging, they are difficult to create at frequencies higher than THz. This difficulty is due to size restrictions and significant ohmic losses in electronic circuits. Although THz frequencies can control THz beams in a uniform manner, they are typically unable to dynamically manipulate the THz wavefronts. This is ultimately due to deficiencies in the local-tuning capabilities at deep-subwavelength scales in this frequency domain. Therefore, developing new approaches that bypass reliance on local tuning is a priority.

As reported in Advanced Photonics, researchers from Shanghai University and Fudan University developed a general framework and metadevices for achieving dynamic control of THz wavefronts. Instead of locally controlling the individual meta-atoms in a THz metasurface (e.g., via PIN diode, varactor, etc.), they vary the polarization of a light beam with rotating multilayer cascaded metasurfaces. They demonstrate that rotating different layers (each exhibiting a particular phase profile) in a cascaded metadevice at different speeds can dynamically change the effective Jones-matrix property of the whole device, achieving extraordinary manipulations of the wavefront and polarization characteristics of THz beams. Two metadevices are demonstrated: the first metadevice can efficiently redirect a normally incident THz beam to scan over a wide solid-angle range, while the second one can dynamically manipulate both wavefront and polarization of a THz beam.

This work proposes an attractive alternative way to achieve low-cost dynamic control of THz waves. The researchers hope that the work will inspire future applications in THz radar, as well as bio- and chemical sensing and imaging.

###

Read the open access article, “Dynamically controlling terahertz wavefronts with cascaded metasurfaces,” Adv. Photonics, 3(3), 036003 (2021), doi 10.1117/1.AP.3.3.036003.

Media Contact
Daneet Steffens
[email protected]

Original Source

https://www.spie.org/news/cascaded-metasurfaces-for-dynamic-control-of-thz-wavefronts?SSO=1

Related Journal Article

http://dx.doi.org/10.1117/1.AP.3.3.036003

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsOpticsResearch/Development
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Enhancing Supercapacitors: The Impact of Rare Earth Ions

September 5, 2025

Butyric and Valeric Acids Combat Stress-Induced Depression

September 5, 2025

Mapping the Lactylome in Porcine Granulosa Cells

September 5, 2025

Ni-Doped BiOCl/MXene Composite Boosts CO₂ Reduction Efficacy

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Supercapacitors: The Impact of Rare Earth Ions

Butyric and Valeric Acids Combat Stress-Induced Depression

Mapping the Lactylome in Porcine Granulosa Cells

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.