• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, September 27, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Carnegie Mellon to lead NASA Space Technology Research Institute

Bioengineer by Bioengineer
March 17, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In space travel, custom parts for vehicles such as rockets and satellites are often needed quickly to accommodate changes in design, as well as for repair and functionality purposes. Additive manufacturing is an ideal technology to meet these needs, as components can be made through a relatively short cycle of design, build, and test. However, this cycle must be continually refined in order to ensure the quality and reliability of the 3D printed parts.

Carnegie Mellon University Materials Science & Engineering Professor Tony Rollett

Credit: Carnegie Mellon University College of Engineering

In space travel, custom parts for vehicles such as rockets and satellites are often needed quickly to accommodate changes in design, as well as for repair and functionality purposes. Additive manufacturing is an ideal technology to meet these needs, as components can be made through a relatively short cycle of design, build, and test. However, this cycle must be continually refined in order to ensure the quality and reliability of the 3D printed parts.

A new NASA Space Technology Research Institute (STRI) led by Carnegie Mellon University seeks to shorten the cycle required to design, manufacture, and test parts that can withstand the conditions of space travel through the development of models for qualification and certification (Q&C).

First set up in 2016, the overall STRI program aims to strengthen NASA’s ties to the academic community through long-term, sustained investment in research and technology development, while also fostering talent among highly-skilled engineers, scientists, and technologists.

The $15 million project, Institute for Model-based Qualification & Certification of Additive Manufacturing (IMQCAM), will be co-directed by Tony Rollett, a professor of materials science and engineering at Carnegie Mellon University, and Somnath Ghosh, a professor of civil and systems engineering at Johns Hopkins University.

“In order to make a printed product have predictable properties, we need to understand more about what its internal structure is, how it depends on the printing process, and what properties it has,” said Rollett. “The STRI affords us an opportunity for a major collaboration through which we can construct the models that our partners at NASA very much need in order to do their work.”

Over the course of five years, the institute will develop detailed computer models, or digital twins, for additively manufactured parts that have been validated against experimental data, verified against physical mechanisms, and subjected to rigorous uncertainty quantification protocols. The models will evaluate response to fatigue in spaceflight materials that are currently used for 3D printing, as well as introducing and qualifying new materials.

The project outcomes will serve as a vital resource for partners at NASA, as the models will enable them to better predict the parts’ performance abilities.

The Institute will also serve as a catalyst for recruiting and training students and post-docs to have a comprehensive understanding of the additive manufacturing Q&C process and be the future leaders in the field. Students from across institutional partners will be mentored by both STRI team members and NASA researchers throughout the project.

Carnegie Mellon faculty members Sneha Prabha Narra, Mohadeseh Taheri-Mousavi, and Bryan Webler will also contribute their expertise to the institute.

Additional institutional partners on the project include Vanderbilt University, University of Texas at San Antonio, University of Virginia, Case Western Reserve University, Johns Hopkins University Applied Physics Laboratory, Southwest Research Institute, and Pratt & Whitney.



Share12Tweet8Share2ShareShareShare2

Related Posts

ETRI confirms possibility of wireless communication 40m underground in mine_1

ETRI confirms possibility of wireless communication 40m underground in mine

September 27, 2023
Associate Prof Rohit Ramchandra

A novel role discovered for vagus nerve

September 27, 2023

Patients who quit smoking after percutaneous coronary intervention do as well as non-smokers – unless they had smoked heavily

September 27, 2023

THE LANCET: Gender inequalities worsen women’s access to cancer prevention, detection and care; experts call for transformative feminist approach

September 27, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ETRI confirms possibility of wireless communication 40m underground in mine

A novel role discovered for vagus nerve

Patients who quit smoking after percutaneous coronary intervention do as well as non-smokers – unless they had smoked heavily

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In