• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, May 17, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Carbon molecular sieve integrated graphene sensor: New paradigm in atmospheric gas sensing and molecular identification

Bioengineer by Bioengineer
March 17, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Graphene, an atomic-thick sheet of carbon has found immense applications in gas sensors due to its single-molecule sensitivity, low-noise levels, and high carrier density. However, graphene’s much-heralded sensitivity also means it is inherently non-selective to any gas. Hence, it easily gets huge p-doping (reduction of graphene electron density) when exposed to atmospheric air which limits demonstrations of its selectivity to only inert environments such as dry air, or nitrogen. Nevertheless, for the actual commercialization of graphene in applications like environmental monitoring or breath/skin gas clinical sensors, atmospheric exposure is required. This has necessitated the desire to achieve simultaneous atmospheric passivation, and high speed & selective gas sensing in graphene. Common methods of inducing selectivity typically involve polymer coatings on graphene. However, this approach changes graphene’s intrinsic characteristics, while still exposing significant sections of the graphene channel to atmospheric doping.

Figure 1 Device schematic of the activated-carbon functionalized graphene sensor with the inset showing the porous activated carbon-graphene interface.

Credit: Manoharan Muruganathan from JAIST.

Graphene, an atomic-thick sheet of carbon has found immense applications in gas sensors due to its single-molecule sensitivity, low-noise levels, and high carrier density. However, graphene’s much-heralded sensitivity also means it is inherently non-selective to any gas. Hence, it easily gets huge p-doping (reduction of graphene electron density) when exposed to atmospheric air which limits demonstrations of its selectivity to only inert environments such as dry air, or nitrogen. Nevertheless, for the actual commercialization of graphene in applications like environmental monitoring or breath/skin gas clinical sensors, atmospheric exposure is required. This has necessitated the desire to achieve simultaneous atmospheric passivation, and high speed & selective gas sensing in graphene. Common methods of inducing selectivity typically involve polymer coatings on graphene. However, this approach changes graphene’s intrinsic characteristics, while still exposing significant sections of the graphene channel to atmospheric doping.

To achieve simultaneous atmospheric passivation, and selective gas sensing in graphene, a research team led by Dr. Manoharan Muruganathan (Senior Lecturer), and Professor Hiroshi Mizuta at the Japan Advanced Institute of Science and Technology (JAIST) developed a nano-porous activated-carbon functionalized graphene channel in collaboration with industrial partners, Mr. Hisashi Maki, Mr. Masashi Hattori, Mr. Kenichi Shimomai.

The activated-carbon functionalized Chemical vapor deposition (CVD)-graphene channel (Figure 1) was obtained via pyrolysis of a post-lithographic Novolac resin polymer, says the researchers Dr. A. Osazuwa Gabriel and Dr. R. Sankar Ganesh. Due to the similar work-function between the activated carbon and graphene, the electronic characteristics of the CVD-graphene are retained in the sensor, with negligible atmospheric doping even after 40 minutes of atmospheric exposure. Furthermore, the oxidized activated-carbon-graphene interface defines ammonia selective adsorption sites, resulting in room temperature ammonia sensitivity of single-digit parts per billion (ppb) in atmospheric air with a few seconds response time. Consequently, molecular sieve functionality in atmospheric air was realized.

Using the same sensor, they also demonstrated a new molecular identification technique, the charge neutrality point disparity method, which utilizes the electric-field-dependent charge transfer characteristics of adsorbed gases on the graphene channel. The extreme ammonia selectivity, atmospheric passivation, as well as facile and scalable lithographic fabrication of this sensor makes it suitable for clinical and environmental sensor applications. “These results take graphene gas sensors from demonstrations in controlled environments to actual atmospheric applications, opening a new vista in graphene-based gas sensing”, says the research collaborator Mr. Masashi Hattori, Manager, TAIYO YUDEN CO., LTD.

###

More information: Gabriel Osazuwa Agbonlahor et. al., Interfacial Ammonia Selectivity, Atmospheric Passivation, and Molecular Identification in Graphene-Nanopored Activated Carbon Molecular-Sieve Gas Sensors, ACS Applied Materials & Interfaces, 13, 61770-61779, (2021). DOI: 10.1021/acsami.1c19138



Journal

ACS Applied Materials & Interfaces

DOI

10.1021/acsami.1c19138

Article Title

Interfacial Ammonia Selectivity, Atmospheric Passivation, and Molecular Identification in Graphene-Nanopored Activated Carbon Molecular-Sieve Gas Sensors

Article Publication Date

29-Dec-2021

Share12Tweet7Share2ShareShareShare1

Related Posts

Lung cancer screening

Nearly half of patients at high risk for lung cancer delayed screening follow-up

May 17, 2022
The subtropical North Atlantic

Deep ocean warming as climate changes

May 17, 2022

For large bone injuries, it’s Sonic hedgehog to the rescue

May 17, 2022

New light on organic solar cells

May 17, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsVehiclesVaccineUrbanizationUniversity of WashingtonViolence/CriminalsVirologyVaccinesZoology/Veterinary ScienceUrogenital SystemVirusWeaponry

Recent Posts

  • Nearly half of patients at high risk for lung cancer delayed screening follow-up
  • Deep ocean warming as climate changes
  • For large bone injuries, it’s Sonic hedgehog to the rescue
  • New light on organic solar cells
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....