• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Carbon cocoons surround growing galaxies far beyond previous beliefs

Bioengineer by Bioengineer
December 17, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: NAOJ

Researchers have discovered gigantic clouds of gaseous carbon spanning more than a radius of 30,000 light-years around young galaxies using the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. This is the first confirmation that carbon atoms produced inside of stars in the early Universe have spread beyond galaxies. No theoretical studies have predicted such huge carbon cocoons around growing galaxies, which raises questions about our current understanding of cosmic evolution. The result was obtained by Seiji Fujimoto and his colleagues, rather unconventionally, by examining data from former observations. He is currently employed at The Cosmic Dawn Center at the Niels Bohr Institute, University of Copenhagen. The study is now published in Astrophysical Journal.

Combinations of archival data achieved unprecedented sensitivity

“We examined the ALMA Science Archive thoroughly and collected all the data that contain radio signals from carbon ions in galaxies in the early Universe, only one billion years after the Big Bang,” says Seiji Fujimoto, the lead author of the research paper, and a former Ph.D. student at the University of Tokyo. “By combining all the data, we achieved unprecedented sensitivity. To obtain a dataset of the same quality with one observation would take 20 times longer than typical ALMA observations, which is almost impossible to achieve.”

The discovery suggests rewriting parts of the evolution of the universe

Heavy elements such as carbon and oxygen did not exist in the Universe at the time of the Big Bang. They were formed later by nuclear fusion in stars. However, it is not yet understood how these elements spread throughout the Universe. Astronomers have found heavy elements inside baby galaxies, but not beyond those galaxies, due to the limited sensitivity of their telescopes. This research team summed the faint signals stored in the data archive and pushed the limits.

“The gaseous carbon clouds are almost five times larger than the distribution of stars in the galaxies, as observed with the Hubble Space Telescope,” explains Masami Ouchi, a professor at the University of Tokyo and the National Astronomical Observatory of Japan. “We spotted diffuse but huge clouds floating in the coal-black Universe.”

Then, how were the carbon cocoons formed?

“Supernova explosions at the final stage of stellar life expel heavy elements formed in the stars,” says Professor Rob Ivison, the Director for Science at the European Southern Observatory. “Energetic jets and radiation from supermassive black holes in the centers of the galaxies could also help transport carbon outside of the galaxies and finally to throughout the Universe. We are witnessing this ongoing diffusion process, the earliest environmental pollution in the Universe.”

New physical processes must be incorporated into existing models

The research team notes that at present theoretical models are unable to explain such large carbon clouds around young galaxies, probably indicating that some new physical process must be incorporated into cosmological simulations. “Young galaxies seem to eject an amount of carbon-rich gas far exceeding our expectation,” says Andrea Ferrara, a professor at Scuola Normale Superiore di Pisa. Seiji Fujimoto adds that carbon is not the only element dispersed in the cocoon. Other elements such as Oxygen and Nitrogen could be detected as well, but the signals were fainter. This, however, indicates that other elements could be undergoing the same process as carbon. This is one of many points for further research, suggested by the study.

The team is now using ALMA and other telescopes around the world to further explore the implications of the discovery for galactic outflows and carbon-rich halos around galaxies.

###

Media Contact
Seiji Fujimoto
[email protected]

Original Source

https://www.nbi.ku.dk/english/news/news19/carbon-cocoons-surround-growing-galaxies-far-beyond-previous-beliefs/

Related Journal Article

http://dx.doi.org/10.3847/1538-4357/ab480f

Tags: AstronomyAstrophysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesParticle PhysicsSpace/Planetary Science
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025
Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1285 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Functional Support Base Diminishes with Age

iPSC-Derived ITGA6+ Cells Restore Glaucoma Eye Flow

Deep Learning Tracks Neonatal Laryngoscope Insertion Depth

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.