• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, July 7, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Capturing cortical connectivity close-up

Bioengineer by Bioengineer
May 24, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The brain is made up of a complex series of networks—signals are constantly bouncing between those networks to allow us to experience the world and move through it effectively.

Resting State Recorded with ISOI in Squirrel Monkey

Credit: Nicholas Card / University of Pittsburgh

The brain is made up of a complex series of networks—signals are constantly bouncing between those networks to allow us to experience the world and move through it effectively.

Understanding how brain networks are organized is key to uncovering how they work. Scientists have learned that brain activity at rest – while sitting quietly – can provide approximate maps of the network organization. But maps generated with this approach miss critical details. An equivalent street map would help a pedestrian navigate from one neighborhood to the next but would offer little help for reaching a more specific destination.

New research from the University of Pittsburgh shows that generating detailed maps is indeed possible with a new imaging method that offers high contrast and high spatial resolution. The study conducted in monkeys shows that intrinsic signal optical imaging (ISOI) can reveal cortical architecture in greater detail than previously seen in living brains.

Functional magnetic resonance imaging (fMRI) is the primary tool for doctors and researchers to observe brain networks. The procedure is non-invasive and takes about 30 minutes. Observing brain networks in this way serves a range of interests from basic research, like understanding brain evolution across species, to fingerprinting brain pathophysiology, as in dementia or autism. ISOI has a lot in common with fMRI, but the detail is much richer, which matters considerably given the relatively small sizes of brain networks.

“Our focus was on studying the connections between motor and sensory brain areas. For example, zones that control hand movement were connected to ones that control arm movement and hand sensation,” explained Nicholas Card, lead author and bioengineering graduate student in the Swanson School of Engineering. “These types of connections are central to how the brain generates skilled movements. If you can understand what these connections are supposed to look like in a healthy subject, you can then identify the neural basis of disability.”

The most important advancement that ISOI brings is that it provides an accurate picture of brain network activity in living subjects. The same level of accuracy can be achieved with methods that require researchers to extract the brain of the animal they were studying and examine it through a microscope. In contrast, ISOI leaves the brain intact, which means that researchers can examine how networks operate in real life situations, like learning a new motor skill.

Another important feature of ISOI is that it relies on hemoglobin, which is in the blood of humans and animals alike. No tracers, dyes, or indicators are needed, making this tool versatile and fit for many species, including humans.

“We benchmarked the results from ISOI against gold standards in the field, including anatomical tracers, and microstimulation and imaging. We found remarkable correspondence between ISOI and the other methods,” said coauthor Omar Gharbawie, assistant professor of neurobiology with a secondary appointment in the Department of Bioengineering. “This is an exciting tool for examining brain connectivity in living animals, and it shows that spontaneous fluctuations can be reported with high accuracy for network organization. Our findings also show that the brain reveals its architecture in granular detail, even when it is just idling at rest”

The paper, “Cortical connectivity is embedded in resting state at columnar resolution,” (DOI: 10.1016/j.pneurobio.2022.102263) was published in the journal Progress in Neurobiology.



Journal

Progress in Neurobiology

DOI

10.1016/j.pneurobio.2022.102263

Subject of Research

Animals

Article Title

Cortical connectivity is embedded in resting state at columnar resolution

Share12Tweet7Share2ShareShareShare1

Related Posts

Gladstone graduate student working with an electrode array to study brain samples.

Pathway deep in the brain makes it resilient after injury

July 6, 2022
Retinal functions

NIH researchers decode retinal circuits for circadian rhythm, pupillary light response

July 6, 2022

What causes the brain’s emotional hub to switch to negative states?

July 6, 2022

Women earn less than men overall, but the gender pay gap is smaller in occupations with a higher ratio of male employees, according to study of over 6,000 Germans

July 6, 2022

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirologyVirusViolence/CriminalsWeather/StormsUrogenital SystemUrbanizationVaccinesVaccineWeaponryUniversity of WashingtonVehiclesZoology/Veterinary Science

Recent Posts

  • Electric vehicle buyers want rebates, not tax credits
  • The key is in the coating: Multilayered coating to improve the corrosion resistance of steel
  • A new method developed by researchers from the Josep Carreras Institute predicts childhood hyperdiploid B-ALL relapse risk
  • ORNL’s Wagner, Curran elevated to Senior Members of IEEE
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....