• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Capturing cortical connectivity close-up

Bioengineer by Bioengineer
May 24, 2022
in Biology
Reading Time: 3 mins read
0
Resting State Recorded with ISOI in Squirrel Monkey
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The brain is made up of a complex series of networks—signals are constantly bouncing between those networks to allow us to experience the world and move through it effectively.

Resting State Recorded with ISOI in Squirrel Monkey

Credit: Nicholas Card / University of Pittsburgh

The brain is made up of a complex series of networks—signals are constantly bouncing between those networks to allow us to experience the world and move through it effectively.

Understanding how brain networks are organized is key to uncovering how they work. Scientists have learned that brain activity at rest – while sitting quietly – can provide approximate maps of the network organization. But maps generated with this approach miss critical details. An equivalent street map would help a pedestrian navigate from one neighborhood to the next but would offer little help for reaching a more specific destination.

New research from the University of Pittsburgh shows that generating detailed maps is indeed possible with a new imaging method that offers high contrast and high spatial resolution. The study conducted in monkeys shows that intrinsic signal optical imaging (ISOI) can reveal cortical architecture in greater detail than previously seen in living brains.

Functional magnetic resonance imaging (fMRI) is the primary tool for doctors and researchers to observe brain networks. The procedure is non-invasive and takes about 30 minutes. Observing brain networks in this way serves a range of interests from basic research, like understanding brain evolution across species, to fingerprinting brain pathophysiology, as in dementia or autism. ISOI has a lot in common with fMRI, but the detail is much richer, which matters considerably given the relatively small sizes of brain networks.

“Our focus was on studying the connections between motor and sensory brain areas. For example, zones that control hand movement were connected to ones that control arm movement and hand sensation,” explained Nicholas Card, lead author and bioengineering graduate student in the Swanson School of Engineering. “These types of connections are central to how the brain generates skilled movements. If you can understand what these connections are supposed to look like in a healthy subject, you can then identify the neural basis of disability.”

The most important advancement that ISOI brings is that it provides an accurate picture of brain network activity in living subjects. The same level of accuracy can be achieved with methods that require researchers to extract the brain of the animal they were studying and examine it through a microscope. In contrast, ISOI leaves the brain intact, which means that researchers can examine how networks operate in real life situations, like learning a new motor skill.

Another important feature of ISOI is that it relies on hemoglobin, which is in the blood of humans and animals alike. No tracers, dyes, or indicators are needed, making this tool versatile and fit for many species, including humans.

“We benchmarked the results from ISOI against gold standards in the field, including anatomical tracers, and microstimulation and imaging. We found remarkable correspondence between ISOI and the other methods,” said coauthor Omar Gharbawie, assistant professor of neurobiology with a secondary appointment in the Department of Bioengineering. “This is an exciting tool for examining brain connectivity in living animals, and it shows that spontaneous fluctuations can be reported with high accuracy for network organization. Our findings also show that the brain reveals its architecture in granular detail, even when it is just idling at rest”

The paper, “Cortical connectivity is embedded in resting state at columnar resolution,” (DOI: 10.1016/j.pneurobio.2022.102263) was published in the journal Progress in Neurobiology.



Journal

Progress in Neurobiology

DOI

10.1016/j.pneurobio.2022.102263

Subject of Research

Animals

Article Title

Cortical connectivity is embedded in resting state at columnar resolution

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Revolutionary Classifier Uncovers Prokaryotic Efflux Proteins

October 6, 2025
N6-methyladenosine Enhances Pork Muscle Quality via Myofiber Regulation

N6-methyladenosine Enhances Pork Muscle Quality via Myofiber Regulation

October 6, 2025

Whole Genome Analysis Uncovers Variations in Goat Pigmentation

October 5, 2025

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

October 5, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

HUWE1 Loss Drives Stemness, Drug Resistance in CRC

Accounting for Albedo in Carbon Market Protocols

Designing Relationships in Intrinsically Disordered Proteins

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.